[1]王涛,董金善,吴华庆,等.低温罐箱应力分析及结构优化[J].石油化工设备,2024,53(02):66-72.[doi:10.3969/j.issn.1000-7466.2024.02.010]
 WANG Tao,DONG Jin-shan,WU Hua-qing,et al.Stress Analysis and Structure Optimization of Cryogenic Tank[J].Petro-Chemical Equipment,2024,53(02):66-72.[doi:10.3969/j.issn.1000-7466.2024.02.010]
点击复制

低温罐箱应力分析及结构优化()
分享到:

石油化工设备[ISSN:1000-7466/CN:62-1078/TQ]

卷:
53
期数:
2024年02期
页码:
66-72
栏目:
设计计算
出版日期:
2024-03-25

文章信息/Info

Title:
Stress Analysis and Structure Optimization of Cryogenic Tank
文章编号:
1000-7466(2024)02-0066-07
作者:
王涛董金善吴华庆柏凯旋
(南京工业大学 机械与动力工程学院,江苏 南京 211816)
Author(s):
WANG TaoDONG Jin-shanWU Hua-qingBAI Kai-xuan
(College of Mechanical and Power Engineering,Nanjing Tech University,Nanjing 211816,China)
关键词:
低温罐箱应力分析响应面优化数值模拟
Keywords:
cryogenic tankstressanalysisresponse surface optimizationnumerical simulation
分类号:
TE49
DOI:
10.3969/j.issn.1000-7466.2024.02.010
文献标志码:
A
摘要:
移动式压力容器中的低温罐箱常用于运输低温液化气体。低温罐箱采用双层结构,在运输过程中受到的惯性力载荷作用导致整体结构应力分布不均,传统的力学理论不能完全适用于低温罐箱应力强度分析。基于静力学理论,应用ANSYS有限元数值仿真软件,分析了低温罐箱整体应力。对低温罐箱进行响应面实验设计及3D响应面分析,总结出内筒体应力受内筒体厚度影响最大,加强圈应力受八点支撑区域加强圈高度影响最大。使用ANSYS响应面优化设计模块,对低温罐箱内筒体和加强圈进行结构优化。优化之后内筒体厚度减薄20%,八点支撑区域加强圈厚度减薄50%,内筒体减重17%,低温罐箱整体质量减少0.8 t,低温罐箱结构应力满足JB 4732—1995《钢制压力容器——分析设计标准(2005年确认)》要求,达到了安全性与经济性兼顾的目的。
Abstract:
Cryogenic tanks in mobile pressure vessels are often used to transport cryogenic liquefied gases. The cryogenic tank adopts a double-layer structure,and the stress distribution of the whole structure is uneven due to inertia load in the process of transportation,so the traditional mechanical theory can not be fully applied to the stress strength analysis of the cryogenic tank. Based on the theory of statics,the overall stress level of the cryogenic tank was analyzed by using ANSYS numerical simulation software. According to the response surface experiment design and 3D response surface analysis,it is concluded that the inner cylinder stress is most affected by the inner cylinder thickness,and the stress of the reinforcing ring is most affected by the height of the reinforcing ring in the eight-point support area. ANSYS response surface optimization design module is used to optimize the structure of the cylinder and reinforcing ring in the cryogenic tank.After optimization,the thickness of the inner cylinder is reduced by 20%,the thickness of the reinforcing ring in the eight-point support area is reduced by 50%. The mass of the inner cylinder is reduced by 17%,and the overall mass is reduced by 0.8 tons. The structural stress of the cryogenic tank meets the requirements of the JB 4732-1995 "Steel Pressure Vessels--Design by Analysis(Confirmed in 2005) ",which achieves a balance between safety and economy.

参考文献/References:

[1] 郑静,于艳丽,宋世安,等.多式联运罐式集装箱疲劳分析载荷综述[J].中国水运,2021(11):65-67.
[2] 郭军,黄玲.LNG罐式集装箱多式联运模式发展分析[J].电大理工,2019(2):4-6.
[3] 郑静.应变强化工艺及其在深冷罐式集装箱的应用[J].中国水运,2021(11):113-115.
[4] 王梦月.基于分析法的我国罐式集装箱运输发展建议[J].水运管理,2016(6):27-30.
[5] 宋炳良.罐式集装箱助推液体化学品多式联运[J].中国远洋航务,2016(6):54-55.
[6] 马寒阳,董金善,范森,等.冲击载荷作用下LNG燃料罐径向支撑结构的数值模拟[J].机械强度,2018,40(5):1157-1162.
[7] 刘康.纤维复合材料低温强冲击适用性研究[D].上海:上海交通大学,2007.
[8] 徐鹍鹏,惠虎.基于Tsai-Hill理论环氧玻璃钢管的强度分析[J].化工进展,2016,35(12):3799-3806.
[9] 季维英,顾洪飞,钟建胜,等.罐式集装箱强度设计中若干问题的探讨[J].南通职业大学学报,2019,33(4):74-77.
[10] 方旭,谢禹钧,常佩琛,等.基于断桥结构LNG罐式集装箱内接管传热分析[J].石油化工高等学校学报,2019,32(2):98-102.
[11] 禹海燕.液体罐式集装箱纵向惯性力工况流固耦合仿真分析[J].化学工程与装备,2018(12):181-185.
[12] 禹海燕.压力容器标准在罐式集装箱强度分析上的应用[J].化学工程与装备,2018(7):248-251.
[13] 李云鹏,孟祥宇,罗惠敏,等.LNG罐式集装箱框架支柱结构的稳定性校核及设计中注意事项[J].当代化工,2018,47(6):1212-1215.
[14] 孟祥宇,董鑫,邓超,等.LNG罐式集装箱应力分析及强度判据讨论[J].当代化工,2018,47(2):424-427.
[15] 展志国,张加庆.罐式集装箱用人孔的有限元分析[J].化工装备技术,2017,38(4):38-40.
[16] 蒋程程,蔡永梅,谢禹钧.LNG罐式集装箱内筒强度储备分布及设计中注意事项[J].当代化工,2014(12):2555-2557.
[17] 孙丽娜.基于流固耦合作用罐式集装箱的强度分析与研究[D].南昌:南昌大学,2012.
[18] 常佩琛,谢禹钧.LNG罐式集装箱强度及特征值屈曲分析[J].辽宁石油化工大学学报,2020,40(5):61-65.
[19] 刘金劲.基于ANSYS的罐式集装箱的强度分析[J].石化技术,2019,26(6):82-84,90.
[20] 王琨博.20英尺低温液体罐式集装箱的结构强度计算[J].中国化工装备,2014(5):15-18.
[21] 周国发,孙丽娜.基于流固耦合作用的罐式集装箱强度分析[J].南昌大学学报(工科版),2012,34(2):111-114.
[22] 郎爽,钱才富.关于罐式集装箱有限元计算强度判据的探讨[C]//第十一届全国高等学校过程装备与控制工程专业教学改革与学科建设成果校际交流会论文集.太原:教育部高等学校机械学科过程装备与控制工程教学指导分委员会,2009.
[23] 中国船级社.集装箱检验规范[M].北京:中国船级社,2021.
[24] 液化气体汽车罐车:GB/T 19905—2017[S].
[25] 钢制压力容器——分析设计标准(2005年确认):JB 4732—1995[S].

相似文献/References:

[1]代飞,贺小华.基于鞍座布置的高压加热器壳体适宜长径比应力分析[J].石油化工设备,2020,(05):9.[doi:10.3969/j.issn.10007466.2020.05.002]
 DAI Fei,HE Xiao hua.Stress Analysis of Suitable Length Diameter Ratio of High Pressure Heater Shell Based on Saddle Settings[J].Petro-Chemical Equipment,2020,(02):9.[doi:10.3969/j.issn.10007466.2020.05.002]
[2]郑尚书,李京京,李超,等.涡旋压缩机滚珠防自转机构动力特性研究[J].石油化工设备,2020,(05):21.[doi:10.3969/j.issn.10007466.2020.05.004]
 ZHENG Shang shu,LI Jing jing,LI Chao,et al.Research on Dynamic Characteristics of Antirotation Mechanism of Scroll Compressor Balls[J].Petro-Chemical Equipment,2020,(02):21.[doi:10.3969/j.issn.10007466.2020.05.004]
[3]张 亮.某自升式平台生活模块底座螺栓断裂失效分析及加强结构[J].石油化工设备,2020,(06):74.[doi:10.3969/j.issn.1000-7466.2020.06.013]
 ZHANG Liang.Fracture Failure Analysis and Strengthening Structure of the Base Bolt of a Jack-up Life Module[J].Petro-Chemical Equipment,2020,(02):74.[doi:10.3969/j.issn.1000-7466.2020.06.013]
[4]马一鸣,王海波,杨春天,等.硫冷凝器管板样机数值分析与应力测试对比[J].石油化工设备,2021,(04):1.[doi:10.3969/j.issn.1000—7466.2021.04.001]
 MA Yi-ming,WANG Hai-bo,YANG Chun-tian,et al.Comparative Study on Numerical Analysis and Stress Test of Sulfur Condenser Prototype[J].Petro-Chemical Equipment,2021,(02):1.[doi:10.3969/j.issn.1000—7466.2021.04.001]
[5]王 凯,刘文才,关国伟.基础沉降发展对球罐结构影响的分析研究[J].石油化工设备,2021,(04):31.[doi:10.3969/j.issn.1000—7466.2021.04.006]
 WANG Kai,LIU Wen-cai,GUAN Guo-wei.Analysis and Research on the Influence of Foundation Settlement Development on Spherical Tank Structure[J].Petro-Chemical Equipment,2021,(02):31.[doi:10.3969/j.issn.1000—7466.2021.04.006]
[6]任子奇,董金善.聚丁二烯乳胶夹套反应釜应力与疲劳有限元分析研究[J].石油化工设备,2021,(04):52.[doi:10.3969/j.issn.1000—7466.2021.04.010]
 REN Zi-qi,DONG Jin-shan.Finite Element Analysis of Stress and Fatigue of Polybutadiene Latex Jacketed Reactor Based on ANSYS[J].Petro-Chemical Equipment,2021,(02):52.[doi:10.3969/j.issn.1000—7466.2021.04.010]
[7]崔亚梅,王 成,远双杰.浮顶排水系统底部支座加强板及焊缝应力分析[J].石油化工设备,2021,(06):27.[doi:10.3969/j.issn.1000—7466.2021.06.005]
 CUI Ya-mei,WANG Cheng,YUAN Shuang-jie.Stress Analysis of Bottom Support Reinforcement Plate and Weld of Floating Roof Drainage System[J].Petro-Chemical Equipment,2021,(02):27.[doi:10.3969/j.issn.1000—7466.2021.06.005]
[8]李继峰,石利强,郭 威.高压焊唇法兰分析计算[J].石油化工设备,2023,(03):14.[doi:10.3969/j.issn.1000-7466.2023.03.003]
 LI Ji-feng,SHI Li-qiang,GUO Wei.Analysis and Calculation of High Pressure Weld Lip Flange[J].Petro-Chemical Equipment,2023,(02):14.[doi:10.3969/j.issn.1000-7466.2023.03.003]
[9]冯延勇,李洋飞,于 霞,等.高压输送燃气管道Π型补偿器应力分析[J].石油化工设备,2023,(04):1.[doi:10.3969/j.issn.1000-7466.2023.04.001]
 FENG Yan-yong,LI Yang-fei,YU Xia,et al.Stress Analysis of Gas Pipeline Π Type Compensator for High Pressure Transmission[J].Petro-Chemical Equipment,2023,(02):1.[doi:10.3969/j.issn.1000-7466.2023.04.001]
[10]赵国栋,张型波,解德甲,等.壳程压力载荷下挠性管板扳边应力分类及评定[J].石油化工设备,2023,(04):33.[doi:10.3969/j.issn.1000-7466.2023.04.007]
 ZHAO Guo-dong,ZHANG Xing-bo,XIE De-jia,et al.Classification and Evaluation of Stress of Flexible Tubesheet under Shell Side Pressure[J].Petro-Chemical Equipment,2023,(02):33.[doi:10.3969/j.issn.1000-7466.2023.04.007]

备注/Memo

备注/Memo:
收稿日期: 2023-10-12 作者简介: 王 涛(1997-),男,江苏无锡人,在读硕士研究生,研究方向为过程装备现代设计方法。E-mail:1198160543@qq.com。
更新日期/Last Update: 2024-04-01