[1]鲍硕,李明轩,陆晓峰,等.波纹夹层结构增强的新型罐式集装箱及其设计方法[J].石油化工设备,2024,53(02):50-58.[doi:10.3969/j.issn.1000-7466.2024.02.008]
 BAO Shuo,LI Ming-xuan,LU Xiao-feng,et al.A New Type Tank Container Reinforced with Corrugated Sandwich Structure and Its Design Method[J].Petro-Chemical Equipment,2024,53(02):50-58.[doi:10.3969/j.issn.1000-7466.2024.02.008]
点击复制

波纹夹层结构增强的新型罐式集装箱及其设计方法()
分享到:

石油化工设备[ISSN:1000-7466/CN:62-1078/TQ]

卷:
53
期数:
2024年02期
页码:
50-58
栏目:
设计计算
出版日期:
2024-03-25

文章信息/Info

Title:
A New Type Tank Container Reinforced with Corrugated Sandwich Structure and Its Design Method
文章编号:
1000-7466(2024)02-0050-09
作者:
鲍硕李明轩陆晓峰朱晓磊
(南京工业大学 机械与动力工程学院,江苏 南京 211816)
Author(s):
BAO ShuoLI Ming-xuanLU Xiao-fengZHU Xiao-lei
(College of Mechanical and Power Engineering,Nanjing Tech University,Nanjing 211816,China)
关键词:
罐式集装箱波纹夹层结构矩形罐体设计
Keywords:
tank containercorrugated sandwich structurerectangulartank boxdesign
分类号:
TQ53.2
DOI:
10.3969/j.issn.1000-7466.2024.02.008
文献标志码:
A
摘要:
罐式集装箱因安全性高、承载量大、性价比高、运输灵活以及可以实现多种运输方式快速切换等特点,成为液体货物点对点运输的主要装备。近年来,大容量、高承载能力成为罐式集装箱发展的主流方向。提出了一种波纹夹层结构增强的新型矩形罐式集装箱,并建立了新型罐式集装箱罐体结构的理论设计方法。应用该方法设计了承载能力为1 MPa的新型罐式集装箱罐体,并将设计结果与有限元仿真计算结果进行对比。研究结果表明,相较于传统罐式集装箱,新型罐式集装箱的容量效率提升了17.2%;理论设计方法计算的应力分布特征与有限元计算结果一致,最大误差为6.21%,该理论设计方法可以满足工程需要。理论设计方法可以对任意正交各向异性夹层结构增强的新型罐式集装箱罐体进行设计,具有较高的可移植性。
Abstract:
Tank container has become the main equipment for point-to-point transport of liquid cargo because of its high safety,large carrying capacity,low cost,flexible transport,and quick change of different transport modes. In recent years,large volume and high carrying capacity have become the main trend of tank container development. Based on this,a new type of rectangular tank container reinforced with a corrugated sandwich structure was proposed, and the design method of the tank structure was established. Using this method,a new type of tank box with a bearing capacity of 1 MPa was designed,and the design results were compared with the finite element simulation results. The results show that the volume efficiency of the new tank is increased by 17.2% compared with the traditional tank. The stress distribution characteristics calculated by the theoretical design method are consistent with the finite element results,and the maximum error is 6.21%. The method can meet the engineering needs. This method can be used to design the new type of tank container reinforced by arbitrary orthogonal anisotropic sandwich structure,and has high portability.

参考文献/References:

[1] Djukic L P,Rodgers D C,Herath M T. Design,certification and field use of lightweight highly chemically resistant bulk liquid transport tanks[J]. Comprehensive composite materials Ⅱ,2018(3):439-459.
[2] Hyakudome T,Ishibashi S,Watanabe Y,et al. Application to pressure vessels for underwater vehicle of magnesium alloys[C]//OCEANS 2008-MTS/IEEE Kobe Techno-Ocean. New York:IEEE,2008:1-4.
[3] Doleski R F. Design and analysis of lightweight pressure vessels[M]. Rhode Island:University of Rhode Island,2008.
[4] Musso T W.Frac tanks:US201213611595[P].US8985376B2
[2023-11-02].
[5] Senjanovi■ I,Senjanovi■ T,Lju■tina A M,et al. Structure design of cargo tanks in river liquefied gas carriers[C]//DS 36:Proceedings DESIGN 2006,the 9th International Design Conference,Dubrovnik:2006.
[6] Bergan P,Madsen H. Cellestruktur for bruk I trykksatte tanker og fremgangsm■te for ■tilveiebringe cellestruktur[Cell structure for use in pressurized tanks method for providing cell structure]:Norge Patent 2006(321892)[P].2006.
[7] Ramoo R,Parthasarathy M. A new concept for CNG carriers and floating CNG/oil processing and storage offshore platforms[M]. USA:Altair Product Design Inc.,2011.
[8] Yue W,Chen X.Three-dimensional liquid sloshing numerical analysis on a new designed tank container[C]// ASME pressure Vessels & Piping Conference,High-pressure Technology Student Paper Symposium and Competition,Annual Student Paper Competition Conference,Rudy Scavuzzo Student Paper Symposium. San Antonio:School of Chemical Engineering & Technology,Tianjin University,China,2019.
[9] Van O J,Smith D H W .Liquid tank container and method therefor[P].2014
[2023-11-02].
[10] Ahn J,Choi Y,Jo C,et al. Design of a prismatic pressure vessel with internal X-beam structures for application in ships[J]. Ships and offshore structures,2017,12(6):781-792.
[11] Choi Y,Ahn J,Jo C,et al. Prismatic pressure vessel with stiffened-plate structures for fuel storage in LNG-fueled ship[J]. Ocean engineering,2020(196):106829.
[12] Starczewski M. Non-circular pressure vessels[J]. Br. Engine. Tech. Rep.,1981(14):62-85.
[13] Rezvani M A,Ziada H H,Shurrab M S. Stress analysis and evaluation of a rectangular pressure vessel[M]. Richland:Westinghouse Hanford Co.,1992.
[14] Zeng Z,Gao J,Gu Q. The stress analysis of rectangular pressure vessels having thin-walled reinforcing members[J]. International journal of pressure vessels and piping,1987,30(3):193-204.
[15] Lee J,Choi Y,Jo C,et al. Design of a prismatic pressure vessel:An engineering solution for non-stiffened-type vessels[J]. Ocean engineering,2017(142):639-649.
[16] Bartolozzi G,Pierini M,Orrenius U,et al. An equivalent material formulation for sinusoidal corrugated cores of structural sandwich panels[J]. Composite structures,2013(100):173-185.
[17] Liu Y,Gu F,Li M,et al. An equivalent homogenization theoretical method for composite sandwich cylinders subjected to pure bending[J]. Symmetry,2021(13):2225.
[18] 王小明,魏强,潘曼.等效刚度法计算波纹夹层板弯曲变形与应力[J].中国舰船研究,2021,16(2):90-98. WANG X M,WEI Q,PAN M. Calculation bending deflection and stress for corrugated core sandwich panels employing equivalent stiffness method[J]. Chinese journal of ship research,2021,16(2):90-98.
[19] 杨静宁,马连生.复合材料力学[M].北京:国防工业出版社,2014. YANG J N,MA L S. Mechanics of composite materials[M].Beijing:National Defense Industry Press,2014.
[20]中国科学院北京力学研究所固体力学研究室板壳组.夹层板壳的弯曲、稳定和振动[M].北京:科学出版社,1977. Plate and Shell Group of Solid Mechanics Laboratory,Beijing Institute of Mechanics,Chinese Academy of Sciences. Bending,stability and vibration of sandwich shell[M]. Beijing:China Science Publishing & Media Ltd.,1977.
[21] ASME Boiler and Pressure Vessel Code,Section Ⅷ:ASME Ⅷ—2015[S].

备注/Memo

备注/Memo:
收稿日期: 2023-09-30 作者简介: 鲍 硕(1997-),男,江苏连云港人,在读硕士研究生,从事过程设备先进制造技术的研究。E-mail:soonhunlee@163.com。
更新日期/Last Update: 2024-04-01