[1]李艳.液化天然气加注系统真空绝缘双壁管管系应力分析及优化[J].石油化工设备,2024,53(02):39-44.[doi:10.3969/j.issn.1000-7466.2024.02.006]
 LI Yan.Stress Analysis and Optimization of Vacuum Insulated Double Wall Pipe for Liquefied Natural Gas Refueling System[J].Petro-Chemical Equipment,2024,53(02):39-44.[doi:10.3969/j.issn.1000-7466.2024.02.006]
点击复制

液化天然气加注系统真空绝缘双壁管管系应力分析及优化()
分享到:

石油化工设备[ISSN:1000-7466/CN:62-1078/TQ]

卷:
53
期数:
2024年02期
页码:
39-44
栏目:
设计计算
出版日期:
2024-03-25

文章信息/Info

Title:
Stress Analysis and Optimization of Vacuum Insulated Double Wall Pipe for Liquefied Natural Gas Refueling System
文章编号:
1000-7466(2024)02-0039-06
作者:
李艳
(江苏航运职业技术学院 船舶与海洋工程学院,江苏 南通 226010)
Author(s):
LI Yan
(Ship Engineering Department,Jiangsu Shipping College,Nantong 226010,China)
关键词:
真空绝缘双壁管液化天然气加注系统应力支座
Keywords:
vacuum insulated double wall pipeliquefied natural gasrefueling systemstresssupport
分类号:
U665
DOI:
10.3969/j.issn.1000-7466.2024.02.006
文献标志码:
A
摘要:
以某双燃料船舶液化天然气加注系统的真空绝缘双壁管管系为例,通过理论应力计算和有限元软件应力计算结果的比较,验证了有限元应力计算软件的可行性。基于最大允许跨距计算和设计图样,对真空绝缘双壁管管系进行建模、应力计算及分析,确定了管系最大应力数值和应力过载节点。通过将支座类型由Anc改为Guide,并减少支座数量,完成了真空绝缘双壁管管系支座的优化设计,优化设计后各应力过载节点的二次应力均小于许用应力。
Abstract:
Taking the vacuum insulated double wall pipe system of the liquefied natural gas refueling system on dual-fuel vessels as an example,the feasibility of the stress software was verified by comparing the results of theoretical stress calculation and finite element calculation by using stress software. Based on the maximum span calculation and design diagram, stress calculation and analysis of the pipeline system were carried out to determine the maximum stress and overload stress points of the pipeline. By changing the support type from Anc to Guide and reducing the number of supports,the optimization designs of vacuum insulated double wall pipe support were completed. After optimization,the secondary stress of each overload stress point was less than the allowable stress.

参考文献/References:

[1] 中国船级社.天然气燃料动力船舶规范[M].北京:人民交通出版社,2016.
[2] 孙明烨,刘燕,陈敏,等.LNG管道应力计算与分析[J].煤气与热力,2008,28(12):17-19.
[3] 王长振.LNG船低温管路的应力分析[J].船舶工程,2010,32(S2):36-39.
[4] 王长振.LNG船装卸货管路系统分析[D].上海:上海交通大学,2011.
[5] Mao Qing,Wang Wei,Zhang Yi-xiong. Stress analysis evaluation and pipe support layout for pressurizer discharge system[J]. Nuclear power engineering,2000,21:117-120.
[6] Kishida K,Yamadera M. Optimization for pipe support locations[J]. Ishikawajima-Harima engineering review,1990,30:230-233.
[7] May G.Maintaining piping and support systems[J]. Chemical engineering progress,2005 (101):41-46.
[8] 杜晓程.大型LNG船玻璃钢压载水管道应力校核方法[J].船舶工程,2021,43(1):119-124.
[9] 陈永林,于雁云,林焰.一种船用LNG管路管夹布局优化方法[J].船舶工程,2015,37(5):74-77.
[10] 姚贵林.LNG低温管路应力分析及强度研究[D].大连:大连理工大学,2022.
[11] 李家栋,徐锦煌.应力分析在管道设计过程中的优化及指导[J].天然气化工,2019,44(6):112-118.
[12] Power piping:ASME B31.1—2002[S].
[13] 秦辉,曹凯.LNG动力船供气系统低温管道应力分析[J].舰船科学技术,2022,44(13):36-39.
[14] 曹传胜,唐畅.管道及支吊架间距选择差异研究[J].中国设备工程,2022(18):107-110.
[15] 郑彦渊,王晓.管道支吊架的设置及选用[J].化工生产与技术,2012,19(4):47-49.
[16] 甘绍警,周瑞平,甘少炜.船用LNG储罐与管道应力计算[J].舰船科学技术,2018,40(1):35-40.

相似文献/References:

[1]芦德龙,张尚文,文晓龙,等.液化天然气浸没燃烧式气化器工艺计算[J].石油化工设备,2017,(04):17.[doi:10.3969/j.issn.1000-7466.2017.04.004]
 LU De-long,ZHANG Shang-wen,WEN Xiao-long,et al.Process Calculation of Liquefied Natural Gas Submerged Combustion Vaporizer[J].Petro-Chemical Equipment,2017,(02):17.[doi:10.3969/j.issn.1000-7466.2017.04.004]
[2]童文龙,刘 蛟.集装箱式液化天然气槽罐应用探讨[J].石油化工设备,2019,48(03):61.[doi:10.3969/j.issn.1000-7466.2019.03.012]
 TONG Wen-long,LIU Jiao.Application Discussion on the Container-type Liquefied Natural Gas Tank[J].Petro-Chemical Equipment,2019,48(02):61.[doi:10.3969/j.issn.1000-7466.2019.03.012]
[3]周云,陈岑,尤佳.水幕抑制泄漏液化天然气扩散模拟试验研究[J].石油化工设备,2020,(05):1.[doi:10.3969/j.issn.10007466.2020.05.001]
 ZHOU Yun,CHEN Cen,YOU Jia.Research on Simulation Test of Water Curtain Suppression of Liquefied Nature Gas Leakage[J].Petro-Chemical Equipment,2020,(02):1.[doi:10.3969/j.issn.10007466.2020.05.001]
[4]姜夏雪,安东雨,陈锐莹.大气压对液化天然气罐群接收站设计和运营的影响[J].石油化工设备,2020,(06):6.[doi:10.3969/j.issn.1000-7466.2020.06.002]
 JIANG Xia-xue,AN Dong-yu,CHEN Rui-ying.Effect of Atmospheric Pressure on the Design and Operation of Liquefied Natural Gas Tank Group Receiving Terminals[J].Petro-Chemical Equipment,2020,(02):6.[doi:10.3969/j.issn.1000-7466.2020.06.002]
[5]黄启钺,侯勇俊,孙德林,等.楔顶式超低温球阀阀座热力耦合分析[J].石油化工设备,2022,(01):40.[doi:10.3969/j.issn.1000—7466.2022.01.008]
 HUANG Qi-yue,HOU Yong-jun,SUN De-lin,et al.Thermo-mechanical Coupling Analysis of Valve Seat of Wedge-top Type Cryogenic Ball Valve[J].Petro-Chemical Equipment,2022,(02):40.[doi:10.3969/j.issn.1000—7466.2022.01.008]
[6]黄 挺,李玉光,文晓龙,等.液化天然气双金属全容罐9Ni钢板焊接工艺及质量检验[J].石油化工设备,2022,(06):63.[doi:10.3969/j.issn.1000-7466.2022.06.012]
 HUANG Ting,LI Yu-guang,WEN Xiao-long,et al.Welding Process and Quality Inspection of 9Ni Steel Plate for Liquefied Natural Gas Bimetallic Full Containment Tank[J].Petro-Chemical Equipment,2022,(02):63.[doi:10.3969/j.issn.1000-7466.2022.06.012]
[7]安东雨,吕梦芸,陈锐莹,等.液化天然气接收站零气态外输的新型蒸发气回收方案[J].石油化工设备,2023,(04):7.[doi:10.3969/j.issn.1000-7466.2023.04.002]
 AN Dong-yu,LV Meng-yun,CHEN Rui-ying,et al.A New Boiling Off Gas Recovery Method for Non-natural Gas Send-out Condition in Liquefied Natural Gas Terminal[J].Petro-Chemical Equipment,2023,(02):7.[doi:10.3969/j.issn.1000-7466.2023.04.002]
[8]陈功剑.液化天然气船旁靠补货过程中舱内压力控制技术[J].石油化工设备,2023,(05):33.[doi:10.3969/j.issn.1000-7466.2023.05.006]
 CHEN Gong-jian.Pressure Control Technology for Liquified Natural Gas Vessels during Ship to Ship Replenishment[J].Petro-Chemical Equipment,2023,(02):33.[doi:10.3969/j.issn.1000-7466.2023.05.006]

备注/Memo

备注/Memo:
收稿日期: 2023-10-09 基金项目: 南通市基础科学研究计划项目(JCZ2022053) 作者简介: 李 艳(1981-),女,江西东乡人,讲师,硕士,从事船舶管系设计工作。
更新日期/Last Update: 2024-04-01