[1]王琪,周云,陈岑.含裂纹油气管道CFRP修复数值研究[J].石油化工设备,2024,53(02):23-31.[doi:10.3969/j.issn.1000-7466.2024.02.004]
 WANG Qi,ZHOU Yun,CHEN Cen.Numerical Study of CFRP Repairing for Oil and Gas Pipelines with Cracks[J].Petro-Chemical Equipment,2024,53(02):23-31.[doi:10.3969/j.issn.1000-7466.2024.02.004]
点击复制

含裂纹油气管道CFRP修复数值研究()
分享到:

石油化工设备[ISSN:1000-7466/CN:62-1078/TQ]

卷:
53
期数:
2024年02期
页码:
23-31
栏目:
试验研究
出版日期:
2024-03-25

文章信息/Info

Title:
Numerical Study of CFRP Repairing for Oil and Gas Pipelines with Cracks
文章编号:
1000-7466(2024)02-0023-09
作者:
王琪周云陈岑
(江苏省特种设备安全监督检验研究院,江苏 南京 210036)
Author(s):
WANG QiZHOU YunCHEN Cen
(Special Equipment Safety Supervision Inspection Institute of Jiangsu Province,Nanjing 210036,China)
关键词:
管道裂纹复合材料修复数值分析
Keywords:
pipecrackcomposite materialrepairnumerical analysis
分类号:
TQ055.8;TE973
DOI:
10.3969/j.issn.1000-7466.2024.02.004
文献标志码:
A
摘要:
裂纹缺陷引发的管道强度下降是埋地油气管道的主要事故原因之一,而高强度、高模量、耐腐蚀的碳纤维增强树脂基复合材料(CFRP)可以很好地缠绕修复缺陷管段。针对有/无CFRP修复20钢含矩形裂纹缺陷管道,采用ANSYS有限元软件模拟内压载荷作用下含裂纹管道修复前后的响应过程,分析了裂纹角度、裂纹长度、裂纹深度、修复长度及修复厚度等参数对含裂纹管道强度的影响规律。研究表明,含裂纹管道的最大Mises等效应力随着裂纹与管道轴向夹角的减小、裂纹长度和深度的增大而增大,内压的增大加剧了缺陷参数对管道强度的影响程度。在工程中要严格控制裂纹在深度和长度方向的扩展,在内部减压后再维修含裂纹管道。CFRP修复厚度是修复后含裂纹管道强度的主要影响因素,随着修复厚度一定程度的增大,含裂纹管道最大Mises等效应力呈线性下降。
Abstract:
The strength decline caused by cracks is one of the main causes of accidents in underground oil and gas pipelines,and the high strength,high modulus and corrosion-resistant carbon fiber reinforced resin matrix composite(CFRP) can be well wound to repair the defective pipe segment. Aiming at the 20 steel rectangular crack defect pipeline repaired with or without CFRP,the response process of the cracked pipeline before and after repair under internal pressure load was simulated by ANSYS finite element software,and the influence of crack angle, crack length,crack depth,repair length,repair thickness and other parameters on the strength of cracked pipeline were analyzed. The results show that the maximum Mises equivalent stress of cracked pipeline increases with the decrease of the angle between crack and pipe axis and the increase of crack length and depth. The increase of internal pressure load aggravates the influence degree of defect parameters on pipeline strength. In engineering,the propagation of crack in depth and length direction should be strictly controlled,and the cracked pipeline should not be maintained until internal decompression. The thickness of CFRP repair is the main factor affecting the strength of the cracked pipeline after repair. The maximum Mises equivalent stress of the cracked pipe decreases linearly as the repair thickness increases to a certain extent.

参考文献/References:

[1] Lim K S,Azraai S N A,Yahaya N,et al. Behaviour of steel pipelines with composite repairs analysed using experimental and numerical approaches[J]. Thin-walled structures,2019(139):321-333.
[2] Biezma M V,Andrés M A,Agudo D,et al. Most fatal oil & gas pipeline accidents through history:A lessons learned approach[J]. Engineering failure analysis,2020(110):104446.
[3] K■pple M F,Lauterbach S,Wagner W. Composite repair of through-wall defects in pipework ——Analytical and numerical models with respect to ISO/TS 24817[J]. Composite structures,2013(95):173-178.
[4] Kong D,Huang X,Xin M,et al. Effects of defect dimensions and putty properties on the burst performances of steel pipes wrapped with CFRP composites[J]. International journal of pressure vessels and piping,2020(186):104139.
[5] Zhang J,Lian Z,Zhou Z,et al. Safety and reliability assessment of external corrosion defects assessment of buried pipelines—soil interface:A mechanisms and FE study[J]. Journal of loss prevention in the process industries,2023(82):105006.
[6] Khademi-Zahedi R,Shishesaz M.Application of a finite element method to stress distribution in buried patch repaired polyethylene gas pipes[J].Underground space,2018,4(1):48-58.
[7] 朱豪豪,郭海林,闫生栋,等.含腐蚀缺陷埋地管道在外力作用下的承载力研究[J].中国安全生产科学技术,2018,14(11):70-75. ZHU H H,GUO H L,YAN S D,et al. Study on bearing capacity of buried pipeline containing corrosion defects under external force[J]. Journal of safety science and technology,2018,14(11):70-75.
[8] Oulad Brahim A,Belaidia Idir,Khatir Samir,et al. Strength prediction of a steel pipe having a hemi-ellipsoidal corrosion defect repaired by GFRP composite patch using artificial neural network[J]. Composite structures,2023(304):116299.
[9] Wang X,Li H,Li B,et al. Simulation analysis of external damage and repair of the gas transmission pipeline[J]. Advances in materials science and engineering,2022,2022:1-9.
[10] Freire J L F,Perrut V A,Braga A M B,et al. Use of FBG strain gages on a pipeline specimen repaired with a CFRE composite[J]. Experimental techniques,2015(39):70-79.
[11] 杨怀宇.含缺陷钢制管道碳纤维修复的理论及实验研究[D].大连:大连理工大学,2020. YANG H Y. Theoretical and experimental study on carbon fiber repair of steel pipes with defects[J].Dalian:Dalian University of Technology,2020.
[12] Valadi Z,Bayesteh H,Mohammadi S. XFEM fracture analysis of cracked pipeline with and without FRP composite repairs[J]. Mechanics of advanced materials and structures,2018(27): 1888-1899.
[13] Chen J,Wang H,Salemi M,et al. Finite element analysis of composite repair for damaged steel pipeline[J]. Coatings,2021(11):301.
[14] Zhu W,Sun D,Xie F,et al. Effects of corrosion defect growth on submarine pipeline under operating pressure and axial displacement[J]. Ocean engineering,2023(267):113297.
[15] 余建星,郭帅,余杨,等.裂纹参数对深水海底管道疲劳寿命的影响[J].天津大学学报(自然科学与工程技术版),2016,49(9):889-895. YU J X,GUO S,YU Y,et al. Influence of crack parameters on the fatigue life of deep-sea pipeline[J]. Journal of Tianjin university(Science and technology),2016,49(9):889-895.
[16] 吴佳琦.压力管道缺陷的碳纤维复合材料修复补强技术研究[D].上海:华东理工大学,2014. WU J Q. Study on repairing and reinforcing technology of carbon fiber composite material for pressure pipeline defects[D].Shanghai:East China University of Technology,2014.
[17] 刘培启,耿发贵,刘岩,等.碳纤维增强环氧树脂复合材料修复N80Q钢管的力学性能[J].复合材料学报,2020,37(4):808-815. LIU P Q,GENG F G,LIU Y,et al. Mechanical properties of N80Q steel pipe repaired by carbon fiber reinforced epoxy resin composites[J].Acta materiae compositae sinica,2020,37(4):808-815.
[18] Repair of pressure equipment and piping:ASME PCC-2—2011[S].
[19] Recommended practice for fitness-for-service:API 579—2000[S].
[20] Fitness-for-service:ASME FFS-1—2007[S].
[21] Power piping:ASME B31—2012[S].

相似文献/References:

[1]卢 意,秦步祥,于 雯.一种新型超高分子量聚乙烯增强管的制备[J].石油化工设备,2017,(06):14.[doi:10.3969/j.issn.1000-7466.2017.06.003]
 LU Yi,QIN Bu-xiang,YU Wen.Preparation of a New Ultra-high Molecular Weight Polyethylene Reinforced Pipe[J].Petro-Chemical Equipment,2017,(02):14.[doi:10.3969/j.issn.1000-7466.2017.06.003]
[2]罗 懿.基于ANSYS Workbench有限元法的 外腐蚀管道失效压力研究[J].石油化工设备,2019,48(02):7.[doi:10.3969/j.issn.1000-7466.2019.02.002]
 LUO Yi.Study on the External Corrosion Failure Pressure of Pipeline Based on ANSYS Workbench Finite Element Method[J].Petro-Chemical Equipment,2019,48(02):7.[doi:10.3969/j.issn.1000-7466.2019.02.002]
[3]丁继超,何立东,万方腾,等.阻尼减振技术在加氢分馏塔进料管道上的应用[J].石油化工设备,2019,48(04):60.[doi:10.3969/j.issn.1000-7466.2019.04.011]
 DING Ji-chao,HE Li-dong,WAN Fang-teng,et al.Application of Damping Technique in Hydrogenation Fractionation Tower Feed Pipeline[J].Petro-Chemical Equipment,2019,48(02):60.[doi:10.3969/j.issn.1000-7466.2019.04.011]
[4]范嘉堃,陈海平,明红芳,等.计量撬沉降管道应力分析及抬升措施[J].石油化工设备,2020,(02):38.[doi:10.3969/j.issn.1000-7466.2020.02.008]
 FAN Jia-kun,CHEN Hai-ping,MING Hong-fang,et al.Stress Analysis and Lifting Measures for Settlement Pipeline of Metering Skid[J].Petro-Chemical Equipment,2020,(02):38.[doi:10.3969/j.issn.1000-7466.2020.02.008]
[5]王品贤,夏俏健,牛志勇,等.国内外管道设计标准中管道壁厚计算方法差异[J].石油化工设备,2020,(02):53.[doi:10.3969/j.issn.1000-7466.2020.02.010]
 WANG Pin-xian,XIA Qiao-jian,NIU Zhi-yong,et al.The Difference in Calculation Method of Pipeline Wall Thickness in Domestic and Foreign Pipeline Design Standards[J].Petro-Chemical Equipment,2020,(02):53.[doi:10.3969/j.issn.1000-7466.2020.02.010]
[6]武海峰,张越,张仕渤,等.存在内表面轴向裂纹压力容器的模态分析[J].石油化工设备,2020,(05):39.[doi:10.3969/j.issn.10007466.2020.05.007]
 WU Hai feng,ZHANG Yue,ZHANG Shi bo,et al.Modal Analysis of Pressure Vessel with Inner Surface Axial Crack[J].Petro-Chemical Equipment,2020,(02):39.[doi:10.3969/j.issn.10007466.2020.05.007]
[7]赵 番,汤晓英,王继锋,等.管道漏磁内检测探头耐磨性能旋转试验台设计[J].石油化工设备,2020,(06):11.[doi:10.3969/j.issn.1000-7466.2020.06.003]
 ZHAO Fan,TANG Xiao-ying,WANG Ji-feng,et al.Design of a Probe Friction Resistance Test Bench for Pipeline Magnetic Flux Leakage Inspection Gauge[J].Petro-Chemical Equipment,2020,(02):11.[doi:10.3969/j.issn.1000-7466.2020.06.003]
[8]李 伟,鲍俊涛,阎雪冬,等.工况对管道凹陷形成及管道安全性的影响[J].石油化工设备,2021,(01):35.[doi:10.3969/j.issn.1000—7466.2021.01.007]
 LI Wei,BAO Jun-tao,YAN Xue-dong,et al.Influence of Working Conditions on Pipeline Depression Formation and Pipeline Safety Property[J].Petro-Chemical Equipment,2021,(02):35.[doi:10.3969/j.issn.1000—7466.2021.01.007]
[9]鲁世军,卢雪梅,李玉阁,等.合成甲醇装置变换炉出口管道开裂失效原因分析[J].石油化工设备,2021,(01):72.[doi:10.3969/j.issn.1000—7466.2021.01.014]
 LU Shi-jun,LU Xue-mei,LI Yu-ge,et al.Cause Analysis of Crack and Failure of Conversion Furnace Outlet Pipeline of Methanol Synthesis Unit[J].Petro-Chemical Equipment,2021,(02):72.[doi:10.3969/j.issn.1000—7466.2021.01.014]
[10]李祚成,李思源,许 可.局部减薄管道极限弯矩计算新公式[J].石油化工设备,2021,(04):36.[doi:10.3969/j.issn.1000—7466.2021.04.007]
 LI Zuo-cheng,LI Si-yuan,XU Ke.New Calculation Formulas for Limit Bending Moment of Locally Thinned Pipes[J].Petro-Chemical Equipment,2021,(02):36.[doi:10.3969/j.issn.1000—7466.2021.04.007]

备注/Memo

备注/Memo:
收稿日期: 2023-10-15 作者简介: 王 琪(1984-),女,江苏盐城人,高级工程师,硕士,主要从事特种设备检验工作。
更新日期/Last Update: 2024-04-01