[1]梅毅,刘杨,罗元,等.入口颗粒对旋流除砂器壁面磨损的影响研究[J].石油化工设备,2024,53(02):18-22.[doi:10.3969/j.issn.1000-7466.2024.02.003]
 MEI Yi,LIU Yang,LUO Yuan,et al.Study on the Influence of Inlet Particles on the Wall Erosion of Cyclone Desander[J].Petro-Chemical Equipment,2024,53(02):18-22.[doi:10.3969/j.issn.1000-7466.2024.02.003]
点击复制

入口颗粒对旋流除砂器壁面磨损的影响研究()
分享到:

石油化工设备[ISSN:1000-7466/CN:62-1078/TQ]

卷:
53
期数:
2024年02期
页码:
18-22
栏目:
试验研究
出版日期:
2024-03-25

文章信息/Info

Title:
Study on the Influence of Inlet Particles on the Wall Erosion of Cyclone Desander
文章编号:
1000-7466(2024)02-0018-05
作者:
梅毅刘杨罗元刘祎
(汉正检测技术有限公司,四川 广汉 618300)
Author(s):
MEI YiLIU YangLUO YuanLIU Yi
(Hanzheng Testing Technology Co. Ltd.,Guanghan 618300,China)
关键词:
旋流除砂器磨损颗粒入口速度质量浓度数值模拟
Keywords:
cyclone desandererosionparticleinlet velocitymass concentrationnumerical simulation
分类号:
TH69;TP391.9
DOI:
10.3969/j.issn.1000-7466.2024.02.003
文献标志码:
A
摘要:
基于计算流体动力学方法,采用Fluent软件中的雷诺应力模型和颗粒随机轨道模型,选取旋流除砂器常见工作状态,数值模拟研究了颗粒入口速度在5~15 m/s、质量浓度在10~30 kg/m3变化时对旋流除砂器壁面磨损的影响,得到了旋流除砂器内壁磨损分布规律。模拟结果表明,旋流除砂器壁面磨损分布并不均匀,入口环形空间以及底流口附近磨损率较大。颗粒入口速度和质量浓度的变化对旋流除砂器壁面磨损整体分布影响较小,但入口速度的变化会改变各磨损区域内磨损最严重点的位置,入口环形空间壁面磨损位置变化最为明显,而颗粒质量浓度的变化则对壁面磨损最严重点的位置影响较小。颗粒入口速度和质量浓度的增大都会使旋流除砂器最大磨损率增大,入口速度对旋流除砂器最大磨损率的影响比质量浓度更大。
Abstract:
Based on the computational fluid dynamics method,the Reynolds stress model and the particle random trajectory model in Fluent software were used to select the common operating state of the cyclone desander. The numerical simulation was used to study the inlet velocity of the particles at 5~15 m/s and the mass concentration at 10~30 kg/m3. The influence of the change on the wall erosion of the cyclone desander was obtained,and the erosion distribution law of the inner wall of the cyclone desander was obtained. The simulation results show that the wall erosion distribution of the cyclone desander is not uniform,and the erosion rate near the inlet annular space and the underflow port is large. The change of inlet velocity and particle mass concentration has little effect on the overall distribution of wall erosion of the cyclone desander,but the change of inlet velocity will change the position of the most severe erosion point in each erosion area. The change in wall erosion position in the inlet annular space is most obvious,while the change in particle mass concentration has little effect on the position of the most severe erosion point. The increase in particle inlet velocity and mass concentration will increase the maximum erosion rate of the cyclone desander,and the effect of inlet velocity on the maximum erosion rate of the cyclone desander is greater than that of mass concentration.

参考文献/References:

[1] 梁政,任连城.固液分离水力旋流器流场理论研究[M].北京:石油工业出版社,2011:2-8. LIANG Z,REN L C. Theoretical study on flow field of solid liquid separation hydrocyclone[M]. Beijing:Petroleum Industry Press,2011:2-8.
[2] 赵立新,蒋明虎,孙德智.旋流分离技术研究进展[J].化工进展,2005,24(10):1118-1123. ZHAO L X,JIANG M H,SUN D Z. Recent progress of hydrocyclone separation research[J].Chemical industry and engineering progress,2005,24(10):1118-1123.
[3] 卢梦媚,蒋明虎,赵立新,等.固相颗粒对内嵌固液旋流器分离性能影响的数值模拟[J].机械设计与制造工程,2017,46(1):63-67. LU M M,JIANG M H,ZHAO L X,et al. Numerical simulation for the effect of solid particles on separation performance of the embed solid-liquid cyclone[J]. Machine design and manufacturing engineering,2017,46(1):63-67.
[4] 袁惠新,殷伟伟,黄津,等.固液分离旋流器壁面磨损的数值模拟[J].化工进展,2015,34(3):664-670. YUAN H X,YIN W W,HUANG J,et al. Numerical simulation of the wall attrition in solid-liquid hydrocyclones[J]. Chemical industry and engineering progress,2015,34(3):664-670.
[5] 赵新学,金有海.排尘口直径对旋风分离器壁面磨损影响的数值模拟[J].机械工程学报,2012,48(6):142-148. ZHAO X X,JIN Y H. Effect of dust discharge diameter on wall erosion in cyclone separator[J]. Journal of mechanical engineering,2012,48(6):142-148.
[6] 李坤,李雪斌.重介质旋流器磨损机理分析及应用[J].煤矿机械,2011,32(11):111-113. LI K,LI X B. Analysis and application of heavy medium cyclone's abrasion mechanism[J]. Coal mine machinery,2011,32(11):111-113.
[7] 于驰,王刚,王景昌,等.旋流除砂器流场特性分析[J].大连大学学报,2014,35(3):60-63. YU C,WANG G,WANG J C,et al. Study on flow field characteristic of cyclone desander[J]. Journal of Dalian university,2014,35(3):60-63.
[8] 胥思平,朱宏武,张宝强.固液分离水力旋流除砂器的数值模拟[J].石油机械,2006,34(3):24-27. XU S P,ZHU H W,ZHANG B Q. Numerical simulation of solid-liquid separation for a hydrocyclone[J]. China petroleum machinery,2006,34(3):24-27.
[9] Shi Li-ming,Bayless D J,Kremer G,et al. CFD simulation of the influence of temperature and pressure on the flow pattern in cyclones[J]. Industrial and engineering chemistry research,2006,45(22):7667-7672.
[10] Zhao B,Su Y,Zhang J. Simulation of gas flow pattern and separation efficiency in cyclone with conventional single and spiral double inlet configuration[J]. Chemical engineering research and design,2006,84(A12):1158-1165.
[11]崔凯,张海,王卫良,等.旋流燃烧器数值模拟中Realizable k-ε和RSM模型的比较[J].工程热物理学报,2012,33(11):2006-2009. CUI K,ZHANG H,WANG W L,et al. Comparison between Realizable k-ε and RSM model in the simulation for a swirl burner[J].Journal of engineering thermophysics,2012,33(11):2006-2009.
[12] 谷新春,王伟文,王立新,等.环流式旋风除尘器内流场的数值模拟[J].高校化学工程学报,2010,24(3):388-394. GU X C,WANG W W,WANG L X,et al. Numerical simulation of flow field in circumfluent cyclone separator[J]. Journal of chemical engineering of Chinese universities,2010,24(3):388-394.
[13] 任建新,张利军,熊亮.基于CFD的固体颗粒对流量计振动管的磨损分析[J].传感技术学报,2011,27(8):1208-1211. REN J X,ZHANG L J,XIONG L. Analysis of solid particles wear flowmeter vibration tube based on CFD[J]. Chinese journal of sensors and actuators,2011,27(8):1208-1211.
[14] Zhang Y L,McLaury B S,Shirazi S A. Improvements of particle near-wall velocity and erosion predictions using a commercial CFD code[J]. Journal of fluids engineering,2009,131(3):1-9.
[15] 金有海,于长录,赵新学.旋风分离器环形空间壁面磨损的数值研究[J].高校化学工程学报,2012,26(2):196-202. JIN Y H,YU C L,ZHAO X X. Numerical study on wall erosion of the annular space in cyclone separators[J]. Journal of chemical engineering of Chinese universities,2012,26(2):196-202.
[16] 袁惠新,吕浪,殷伟伟,等.不同入口形式的固液分离旋流器壁面磨损研究[J].化工进展,2015,34(10):3583-3588. YUAN H X,L?譈 L,YIN W W,et al. Numerical simulation of the wall attrition in solid-liquid separation cyclone with different inlet forms[J]. Chemical industry and engineering progress,2015,34(10):3583-3588.

相似文献/References:

[1]何 斌.负压气力输送系统弯管内流场数值模拟与设计优化[J].石油化工设备,2023,(02):44.[doi:10.3969/j.issn.1000-7466.2023.02.008]
 HE Bin.Numerical Simulation and Design Optimization of Flow Field in Elbow in Negative Pressure Pneumatic Conveying System[J].Petro-Chemical Equipment,2023,(02):44.[doi:10.3969/j.issn.1000-7466.2023.02.008]
[2]魏 文,焦文让,孙媛媛.渣油加氢装置循环氢压缩机轴瓦温度异常分析及处理[J].石油化工设备,2023,(02):88.[doi:10.3969/j.issn.1000-7466.2023.02.015]
 WEI Wen,JIAO Wen-rang,SUN Yuan-yuan.Analysis and Treatment of Bearing Bush Temperature Anomaly of Circulating Hydrogen Compressor in Residual Oil Hydrogenation Unit[J].Petro-Chemical Equipment,2023,(02):88.[doi:10.3969/j.issn.1000-7466.2023.02.015]

备注/Memo

备注/Memo:
收稿日期: 2023-10-16 基金项目: 四川省科技计划项目(2023YFS0486) 作者简介: 梅 毅(1990-),男,四川广安人,工程师,硕士,研究方向为能源装备。E-mail:1351546164@qq.com。
更新日期/Last Update: 2024-04-01