[1]廖 平a,董超群ab,骆江华a,等.基于COMSOL软件的直角弯管声波传播特性规律研究[J].石油化工设备,2024,53(02):10-17.[doi:10.3969/j.issn.1000-7466.2024.02.002]
 LIAO Pinga,DONG Chao-qunab,LUO Jiang-huaa,et al.Research on the Sound Wave Propagation Law of Right-angle Pipe Bending Based on COMSOL Software[J].Petro-Chemical Equipment,2024,53(02):10-17.[doi:10.3969/j.issn.1000-7466.2024.02.002]
点击复制

基于COMSOL软件的直角弯管声波传播特性规律研究()
分享到:

石油化工设备[ISSN:1000-7466/CN:62-1078/TQ]

卷:
53
期数:
2024年02期
页码:
10-17
栏目:
试验研究
出版日期:
2024-03-25

文章信息/Info

Title:
Research on the Sound Wave Propagation Law of Right-angle Pipe Bending Based on COMSOL Software
文章编号:
1000-7466(2024)02-0010-08
作者:
廖 平1a董超群1a1b骆江华1a汪 战1a刘建勋1a1b黄成于2任连城1a1b
(1.重庆科技学院 a.机械与动力工程学院,b.石油天然气装备研究院,重庆 401331;2.中国石油西南油气田分公司 重点地面工程建设项目部,四川 成都 610066)
Author(s):
LIAO Ping1aDONG Chao-qun1a1bLUO Jiang-hua1aWANG Zhan1aLIU Jian-xun1a1bHUANG Cheng-yu2REN Lian-cheng1a1b
(1.Chongqing University of Science & Technology a.School of Mechanical and Power Engineering, b.Oil and Gas Equipment Research Institute,Chongqing 401331,China;2.Key Surface Engineering Construction Project Department of PetroChina Southwest Oil and Gas Field Company,Chengdu 610066,China)
关键词:
直角弯管声波频域分析COMSOL软件
Keywords:
right-angle pipe bendingsound wavefrequency domain analysisCOMSOL software
分类号:
TE99
DOI:
10.3969/j.issn.1000-7466.2024.02.002
文献标志码:
A
摘要:
基于声波传播理论,建立并推导了声波在弯管处的Helmholtz方程。采用COMSOL Multophysics软件的压力声学模块,对不同弯曲半径的直角弯管进行频域分析,研究了不同弯曲半径弯管内声波传播特性规律。研究结果显示,弯曲半径对弯管内声波散射系数和传输损耗具有显著影响,弯曲半径较大的弯管曲率较小,弯管内声波散射效应较弱,传输损耗较小,声压级较高;弯曲半径较小的弯管曲率较大,弯管内声波散射效应较强,传输损耗较大,声压级较低。低频段内,声波波长大于弯管弯曲半径,散射系数与传输损耗较小;高频段内,声波波长接近或小于弯管弯曲半径,散射系数与传输损耗较大。
Abstract:
Based on the theory of sound wave propagation,the Helmholtz equation of the sound wave at the pipe bending was established and derived. In order to study the sound wave propagation characteristics of pipe bending with different bending radius,the frequency domain analysis of the right-angle pipe bending with different bending radius was carried out based on the pressure acoustic module in COMSOL Multophysics software. The analysis results show that the bending radius has a significant effect on the acoustic scattering coefficient and transmission loss in the bending. In the bending with a larger bending radius,the acoustic scattering effect is weaker and the transmission loss is smaller. On the contrary,the transmission loss in the smaller bending radius is higher due to the large curvature. In low-frequency bending,the acoustic wavelength is larger than the bending radius of the pipe,and the scattering coefficient and transmission loss are small;in high-frequency bending,due to the acoustic wavelength close to or smaller than the bending radius of the pipe bending,the scattering coefficient and transmission loss are large.

参考文献/References:

[1] Williams J E F,Hawkings D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philos. Trans. R. Soc.,1969,A264:321.
[2] Benes L,Louda P,Kozel K,et al. Numerical simulation of flow through channels with T-junction[J]. Applied mathematics and computation,2013,219(13):7225-7235.
[3] Masaaki Mori A,Takayuki Masumoto,Kunihiko Ishihara. Study on acoustic,vibration and flow induced noise characteristics of T-shaped pipe with a square cross-section[J]. Applied acoustics,2017(120):137-147.
[4] Han T,Wang L,Cen K,et al. Flow-induced noise analysis for natural gas manifolds using LES and FW-H hybrid method[J]. Applied acoustics,2020(159):107101.
[5] Gao R,Liu K,Li A,et al. Study of the shape optimization of a tee guide vane in a ventilation and air-conditioning duct[J]. Building and environment,2018(132):345-356.
[6] 刘翠伟,李玉星,李雪洁,等.基于CFD模拟的输气管道阀门流噪声仿真[J].油气储运,2012,31(9):657-662.
[7] 石喜,吕宏兴,朱德兰,等.PVC三通管水流阻力与流动特征分析[J].农业机械学报,2013,44(1):73-79.
[8] 陈江林,吕宏兴,石喜,等.T型三通管水力特性的数值模拟与试验研究[J].农业工程学报,2012,28(5):73-77.
[9] 李艳华,黄冰阳.考虑流固耦合的任意支撑和分支角度三通管阻抗计算方法[J].舰船科学技术,2017,39(6):42-47.
[10] 王珂.通风空调风管三通气动噪声数值模拟及降噪方案[D].西安:西安建筑科技大学,2020.
[11] 易笃政,冯早,朱雪峰.低频声学激励在变工况环境下排水管道中的传播特性研究[J].振动与冲击,2023,42(18):259-267.
[12] 王畅,王兆坤,刘俊燚,等.弯管缺陷尺寸与位置对超声波传播特性影响[J].应用声学,2023,42(4):710-721.
[13] 吕猛.基于声波传播特性的地下管线探测技术研究[J].中国新技术新产品,2022(23):126-128.
[14] 李宁,王献忠,林鸿洲,等.循环水管路系统的流噪声实验研究[J].振动、测试与诊断,2023,43(5):909-914.
[15] 王均宇,张克鹏,宋永兴,等.短管节流阀的空化流动与噪声的数值模拟分析[J].机床与液压,2023,51(13):178-183.
[16] 夏极,柯兵.离心泵入口管段对流噪声影响的试验研究[J].中国水运,2023,23(8):51-53.
[17] 吴亚攀.斜入射声波在管阵列中的传播特性研究[D].北京:华北电力大学,2016.
[18] 安连锁.声波在锅炉换热器管阵列中的传播特性研究 [J].电力科学与技术学报,2007,22(1):43-46.
[19] 王刚,安琳.COMSOL Multiphysics 工程实践与理论仿真:多物理场数值分析技术[M].北京:电子工业出版社,2012:1-419.
[20]王芳,冯秀芳.求解带有不连续波数的二维变系数Helmholtz方程的一种高精度紧致差分方法[J].工程数学学报,2022,39(1):120-134.
[21] 王敬之,马新,项正,等.等离子体层嘶声波对辐射带电子投掷角散射系数的多维建模[J].物理学报,2022,71(22):363-376.

备注/Memo

备注/Memo:
收稿日期: 2023-09-30 基金项目: 国家自然科学基金项目(5227041805);重庆市教委项目(KJQN202001538、KJQN201901545) 作者简介: 廖 平(1997-),男,重庆人,在读硕士研究生,主要从事管道噪声特性研究。 通信作者: 董超群(1983-),男,河南西华人,讲师,博士,现主要从事油气管道安全评价及完整性分析。
更新日期/Last Update: 2024-04-01