[1]姜夏雪,安东雨,陈锐莹.大气压对液化天然气罐群接收站设计和运营的影响[J].石油化工设备,2020,(06):6-10.[doi:10.3969/j.issn.1000-7466.2020.06.002]
 JIANG Xia-xue,AN Dong-yu,CHEN Rui-ying.Effect of Atmospheric Pressure on the Design and Operation of Liquefied Natural Gas Tank Group Receiving Terminals[J].Petro-Chemical Equipment,2020,(06):6-10.[doi:10.3969/j.issn.1000-7466.2020.06.002]
点击复制

大气压对液化天然气罐群接收站设计和运营的影响()
分享到:

石油化工设备[ISSN:1000-7466/CN:62-1078/TQ]

卷:
期数:
2020年06期
页码:
6-10
栏目:
试验研究
出版日期:
2020-12-30

文章信息/Info

Title:
Effect of Atmospheric Pressure on the Design and Operation of Liquefied Natural Gas Tank Group Receiving Terminals
作者:
姜夏雪安东雨陈锐莹
中海石油气电集团有限责任公司,北京 100028
Author(s):
JIANG Xia-xueAN Dong-yuCHEN Rui-ying
CNOOC Gas & Power Group,Beijing 100028,China
关键词:
储罐接收站液化天然气大气压蒸发气设计
Keywords:
tankreceiving terminalliquefied natural gasatmospheric pressureboil-off gasdesign
分类号:
TQ053.2
DOI:
10.3969/j.issn.1000-7466.2020.06.002
文献标志码:
A
摘要:
准确计算蒸发气的产生量对液化天然气罐群接收站的设计和生产运营具有重要影响。从接收站蒸发气产生量的计算出发,浅析了蒸发气产生量随接收站规模增大而增加的原因。基于河北某液化天然气罐群接收站的数据,分别计算了大气压正常变化率为0.5 kPa/h、0.74 kPa/h、2 kPa/h时不同建设阶段和操作模式下的蒸发气产生量,并以福建某接收站的大气压变化率值计算对比了相同配置下的罐群接收站蒸发气产生量。结果表明,储罐数量越多,大气压变化率引起的蒸发气产生量占比越大,设计采用储罐表压控制的罐群接收站时需重视大气压变化对其设计和运营的影响。对新建的罐群类接收站,可采用储罐绝对压力控制方式。在建设场地受限情况下,可考虑采用离心压缩机取代传统的往复式压缩机。
Abstract:
Accurate calculation of the amount of boil-off gas(BOG) generated has an important impact on the design and operation of the tank group liquefied natural gas(LNG) receiving terminal. Based on the calculation of BOG production volume at the receiving terminal,the reasons for the increase of BOG production with the increase of the size of the receiving station were analyzed. The amount of BOG produced at normal change rate as 0.5 kPa/h,0.74 kPa/h,and 2 kPa/h of atmospheric pressure in different construction stages and operating modes of a receiving station in Hebei province was calculated. At the same time,the atmospheric pressure change rate of a station in Fujian province was compared with the same configuration is shown. The results show that the greater the number of storage tanks,the greater the proportion of BOG production caused by the atmospheric pressure change rate. When the storage tanks are controlled by gauge pressure,the impact of atmospheric pressure changes on the design and operation of tank group receiving stations needs to be considered. For newly built tank group receiving stations,the absolute pressure control method of storage tanks can be adopted. In the case of limited construction sites,centrifugal compressors can be used to replace traditional reciprocating compressors.

参考文献/References:

[1] 梁威,陈锐莹,姜夏雪.LNG罐群接收站的研究现状及 前景[J].中国化工贸易,2019,11(15):4.LIANG W,CHEN R Y, JIANG X X. Research status and prospect of LNG tank group receiving station[J].China chemical trade,2019,11(15):4.[2] 宋鹏飞,陈峰,侯建国.LNG接收站蒸发气(BOG)的静态计算[J].天然气化工(C1化学与化工),2016,41(1):48-50.SONG P F,CHEN F,HOU J G. Static calculation of BOG for LNG terminal[J] . Natural gas chemical indus- try,2016,41(1): 48-50.[3] 刘中华.LNG接收站BOG计算原理[J].中国石油和化工标准与质量,2013,34(5):240.LIU Z H. Principle of BOG calculation at LNG receiving station[J]. China petroleum and chemical standard and quality,2013,34(5):240.[4] 付子航.LNG接收站蒸发气处理系统静态设计计算模型[J].天然气工业,2011,31(1):83-85,116-117.FU Z H. A static-design calculation model of boil-off gas(BOG) handling system of an LNG receiving terminal[J].Natural gas industry,2011,31(1):83-85,116-117.[5] 王彦,信鹏,高萃仙,等.LNG接收站蒸发气的发生与气量计算[J].油气储运,2010,29(5):363-364.WANG Y,XIN P,GAO C X,et al. Generation of vapour and vapour volume calculation for LNG receiving station[J]. Oil & gas storage and transportation,2010,29(5):363-364.[6] 鹿晓斌,郭雷,曲顺利.利用Hysys模拟计算接收站BOG蒸发量[J].化工进展,2015,34(S1):47-50.LU X B,GUO L,QU S L. Simulated calculation of BOG generation in LNG receiving terminal by Hysys[J].Chemical industry and engineering progress, 2015,34(S1):47-50.[7] 仇德朋,鹿晓斌,曲顺利.液化天然气接收站蒸发气产生量的计算研究与分析[J].化学工业与工程技术,2014,35(3):14-17.QIU D P,LU X B,QU S L. Research and analysis of boil off gas calculation in LNG terminal[J]. Journal of chemical industry & engineering,2014,35(3):14-17.[8] 液化天然气设备与安装 陆上装置设计:GB/T 22724—2008[S].Installation and equipment for liquefied natural gas—Design of onshore installations:GB/T 22724—2008[S].[9] 邓林.LNG接收站BOG计算与压缩机能力配置[J].化工设计,2016,26(2):15-18.DENG L. BOG calculation and compressor capacity configuration of LNG receiving station[J].Chemical engineering design,2016,26(2):15-18.[10] 刘玉丰,张晓瑞. LNG接收站蒸发气(BOG)的产生和计算[J].化学工程与装备,2019(2):131-133.LIU Y F,ZHANG X R. Generation and calculation of boil-off gas(BOG) at LNG receiving station[J].Chemi- cal engineering and equipment,2019(2):131-133.[11] 李冉,刘景俊,李玉星,等. LNG接收站蒸发计算状态方程选择[J].化工学报,2018,69(S2):31-37.LI R,LIU J J,LI Y X,et al. Selection of state equations for evaporation calculation in LNG receiving terminal[J]. CIESC journal,2018,69(S2):31-37.[12] Installation and equipment for liquefied natural gas—Design of shore installations:EN 1473—2007[S].[13] 贾保印,白改玲.大气压变化对蒸发气压缩机处理能力的影响[J].油气储运,2016,35(2):154-157.JIA B Y,BAI G L. Impacts of changes in atmospheric pressure to processing capacity of BOG compressor[J]. Oil & gas storage and transportation,2016,35(2):154-157.[14] 叶忠志,张园星.液化天然气BOG压缩机选型分析[J].石油和化工设备,2013,16(3):61-63.YE Z Z,ZHANG Y X. Selection analysis of BOG compressor for liquefied natural gas[J]. Petro & chemical equipment,2013,16(3):61-63.[15] 朱琳,李贺松,高杨.肇庆液化天然气项目BOG压缩机选型分析[J].石油和化工设备,2015(2):14-16.ZHU L,LI H S,GAO Y. Selection analysis of BOG compressor for Zhaoqing liquefied natural gas project[J]. Petro & chemical equipment,2015(2):14-16.[16] 尹清党.BOG压缩机在LNG接收站的应用[J].压缩机技术,2009(6):35-39.YIN Q D. Application of BOG compressor to LNG receiver station[J]. Compressor technology,2009(6):35-39.[17] 王洪飞.LNG接收站BOG压缩机的选型及应用[J].内燃机与配件,2019(10):63-66.WANG H F. Selection and application of BOG com- pressor in LNG receiving terminals[J]. Internal combusion engine & parts,2019(10):63-66.[18] 王灵德,计洪旭,何振鹏,等.LNG接收站用BOG迷宫压缩机的应用研究[J].压缩机技术,2019(3):29-32.WANG L D,JI H X,HE Z P,et al. Applications research of BOG labyrinth compressor in LNG receiving station[J]. Compressor technology,2019(3):29-32.[19] 任东,卢鼎,王波飞. BOG直接压缩外输工艺在LNG接收站的应用[J].浙江化工,2014 (11):43-45.REN D,LU D,WANG B F. The application of direct compression process in LNG terminal[J].Zhejiang chemi-cal industry,2014 (11):43-45.[20] 李莹珂,蒲黎明,祁亚玲.LNG工艺中压缩机的选型研究[J].天然气与石油,2014,32(5):25-28.LI Y K,PU L M,QI Y L. Study on the selection of LNG process compressors[J].Natural gas and oil,2014,32(5):25-28.[21] 赵思琦,王海. LNG接收站BOG压缩机:往复式与离心式比较[J].石化技术,2019,26(10):31-32.ZHAO S Q,WANG H. BOG compressor used in LNG receiving terminals:Contrast between reciprocating type and centrifugal type[J]. Petrochemical industry technology, 2019,26(10):31-32.

相似文献/References:

[1]王凯锋,刘 春,刘永腾.液化天然气储罐9%Ni钢板表面麻点成因及控制[J].石油化工设备,2018,47(01):64.[doi:10.3969/j.issn.1000-7466.2018.01.013]
 WANG Kai-feng,LIU Chun,LIU Yong-teng.Surface Pitting Genesis and Control for 9% Ni Steel Plate of Liquefied Natural Gas Tank[J].Petro-Chemical Equipment,2018,47(06):64.[doi:10.3969/j.issn.1000-7466.2018.01.013]
[2]马红杰a,龚树鹏b.加氢型酸性水汽提装置腐蚀分析与防护[J].石油化工设备,2018,47(01):73.[doi:10.3969/j.issn.1000-7466.2018.01.015]
 MA Hong-jiea,GONG Shu-pengb.Corrosion Analysis and Protection of Hydrogenation Type Acidic Water Stripping Unit[J].Petro-Chemical Equipment,2018,47(06):73.[doi:10.3969/j.issn.1000-7466.2018.01.015]
[3]晏永权,刘寅方,王长久,等.全尺寸补偿膜法密封在外浮顶石脑油罐的应用[J].石油化工设备,2018,47(03):51.[doi:10.3969/j.issn.1000-7466.2018.03.010]
 YAN Yong-quan,LIU Yin-fang,WANG Chang-jiu,et al.Application of Full-size Compensation Membrane Seal for External Floating Roof Naphtha Tank[J].Petro-Chemical Equipment,2018,47(06):51.[doi:10.3969/j.issn.1000-7466.2018.03.010]
[4]刘 民.大型储罐基础沉降及罐体变形检验方法及应用[J].石油化工设备,2018,47(04):97.[doi:10.3969/j.issn.1000-7466.2018.04.018]
 LIU Min.Testing Method and Application of Foundation Settlement and Shell Deformation of Large Storage Tank[J].Petro-Chemical Equipment,2018,47(06):97.[doi:10.3969/j.issn.1000-7466.2018.04.018]
[5]何西波,丁宇奇,贾 溢,等.储罐异常压力紧急平衡装置设计[J].石油化工设备,2019,48(01):25.[doi:10.3969/j.issn.1000-7466.2019.01.005]
 HE Xi-bo,DING Yu-qi,JA Yi,et al.Emergency Balance Device Design for Storage Tanks under Abnormal Pressure[J].Petro-Chemical Equipment,2019,48(06):25.[doi:10.3969/j.issn.1000-7466.2019.01.005]
[6]刘 松,顾继俊.基于相控超声的罐底缺陷检测仿真实验方法[J].石油化工设备,2019,48(05):28.[doi:10.3969/j.issn.1000-7466.2019.05.005]
 LIU Song,GU Ji-jun.Research on Simulation Experiment Method of Tank Bottom Defect Detection Based on Ultrasonic Phased Array[J].Petro-Chemical Equipment,2019,48(06):28.[doi:10.3969/j.issn.1000-7466.2019.05.005]
[7]黄 欢,张 超,陈锐莹,等.基于隔震垫技术的超大型液化 天然气储罐内罐设计[J].石油化工设备,2019,48(06):23.[doi:10.3969/j.issn.1000-7466.2019.06.005]
 HUANG Huan,ZHANG Chao,CHEN Rui-ying,et al.Design of Inner Tank in Super-large Liquefied Natural Gas Storage Tank Based on Isolation Cushion Technology[J].Petro-Chemical Equipment,2019,48(06):23.[doi:10.3969/j.issn.1000-7466.2019.06.005]
[8]杜家超,刘 彪,都 亮,等.立式圆筒形常压储罐泄漏检测与维修策略研究[J].石油化工设备,2020,(02):23.[doi:10.3969/j.issn.1000-7466.2020.02.005]
 DU Jia-chao,LIU Biao,DU Liang,et al.Study on Leakage Detection and Maintenance Strategy of Vertical Cylindrical Atmospheric Storage Tank[J].Petro-Chemical Equipment,2020,(06):23.[doi:10.3969/j.issn.1000-7466.2020.02.005]
[9]崔亚梅,王 成,远双杰.大型储罐挠性接头浮顶排水装置应力分析[J].石油化工设备,2021,(05):13.[doi:10.3969/j.issn.1000—7466.2021.05.003]
 CUI Ya-mei,WANG Cheng,YUAN Shuang-jie.Stress Analysis of Floating Roof Drainage Device with Flexible Joints of Large Scale Storage Tank[J].Petro-Chemical Equipment,2021,(06):13.[doi:10.3969/j.issn.1000—7466.2021.05.003]
[10]杨茂立,周 宇,杨兴卫,等.设备支腿的优化设计及对比研究[J].石油化工设备,2021,(05):38.[doi:10.3969/j.issn.1000—7466.2021.05.008]
 YANG Mao-li,ZHOU Yu,YANG Xing-wei,et al.Optimal Design and Comparative Study of Equipment Legs[J].Petro-Chemical Equipment,2021,(06):38.[doi:10.3969/j.issn.1000—7466.2021.05.008]

备注/Memo

备注/Memo:
中国海洋石油集团公司重大专项“LNG罐群接收站的关键技术研究”(CNOOCKJ135KJXMQD2019-002)
更新日期/Last Update: 1900-01-01