[1]任方田.金属缠绕垫片外圈腐蚀-疲劳断裂失效分析[J].石油化工设备,2025,54(01):75-80.[doi:10.3969/j.issn.1000-7466.2025.01.012]
 REN Fang-tian.Corrosion-fatigue Fracture Analysis of Metal-wound Gasket Outer Ring[J].Petro-Chemical Equipment,2025,54(01):75-80.[doi:10.3969/j.issn.1000-7466.2025.01.012]
点击复制

金属缠绕垫片外圈腐蚀-疲劳断裂失效分析()
分享到:

石油化工设备[ISSN:1000-7466/CN:62-1078/TQ]

卷:
54
期数:
2025年01期
页码:
75-80
栏目:
经验交流
出版日期:
2025-01-25

文章信息/Info

Title:
Corrosion-fatigue Fracture Analysis of Metal-wound Gasket Outer Ring
文章编号:
1000-7466(2025)01-0075-06
作者:
任方田
(万华化学(宁波)有限公司,浙江 宁波 315800)
Author(s):
REN Fang-tian
(Wanhua Chemical (Ningbo) Co. Ltd.,Ningbo 315800,China)
关键词:
管道法兰接头垫片断裂机理
Keywords:
pipeline flange joint gasket fracture mechanism
分类号:
TQ050.7
DOI:
10.3969/j.issn.1000-7466.2025.01.012
文献标志码:
B
摘要:
某沿海化工管道系统中法兰接头出现泄漏。对导致泄漏的金属缠绕垫片外圈断裂部位进行了形貌、金相、化学成分等检验检测分析,探讨了垫片外圈断裂的机理。结果表明,垫片外圈与法兰螺栓之间产生的强烈挤压导致垫片被挤压出凹坑并承受较大的周向应力,加之受垫片材料304不锈钢未进行固溶处理又在沿海大气环境中服役的影响,导致其沿晶应力腐蚀开裂敏感性增强,在挤压凹坑萌生沿晶应力腐蚀裂纹,最终在振动环境中发生了疲劳裂纹扩展。因此,垫片外圈断裂是沿海大气环境中高应力水平下力腐蚀开裂和疲劳共同作用的结果,根据失效原因给出了预防建议。
Abstract:
A flange joint leaked in a coastal chemical pipeline system. The fractured part of the outer ring of the metal spiral wound gasket that caused the leak was examined and analyzed in terms of morphology, metallography, and chemical composition, and the fracture mechanism of the outer ring of the gasket was discussed. The results show that the strong extrusion between the gasket outer ring and the flange bolts caused the gasket to be squeezed out of a pit and subjected to high circumferential stress. In addition, the gasket material, 304 stainless steel, had not been solution-treated and had been exposed to the coastal atmospheric environment, which increased its susceptibility to intergranular stress corrosion cracking. Intergranular stress corrosion cracks started in the extrusion pits and fatigue cracks eventually propagated in the vibration environment. Therefore, the fracture of the outer ring of the seal was the result of the combined effects of stress corrosion cracking and fatigue in the high-stress coastal atmospheric environment, and prevention suggestions were proposed based on the failure causes.

参考文献/References:

[1] Hakimian S , Bouzid A H , Hof L A .Corrosion failures of flanged gasketed joints: A review[J].Journal of advanced joining processes, 2024, 9.DOI:10.1016/j.jajp.2024.100200.
[2] Hu Q, Liu Y, Zhang T, et al. Corrosion failure analysis on the copper alloy flange by experimental and numerical simulation [J]. Engineering failure analysis, 2020, 109: 104276.
[3] Long Y, Luo J, Yue M, et al. Investigation on leakage cause of 13Cr pipe flange used for a Christmas tree in a high-pressure and high-temperature gas well [J]. Engineering failure analysis, 2022, 142: 106793.
[4] van Zyl G, Al-Musharraf M, Al-Muaisub M. Failure investigation of cracks in bolted flange [J]. Journal of failure analysis and prevention, 2014, 14(5): 594-600.
[5] 李广凯,王震,于亚龙,等. 仪表风冷却器换热管开裂失效原因分析[J]. 石油化工腐蚀与防护,2024,41(1):59-64.
[6] 朱泗颖. 304管道应力腐蚀开裂原因分析和应对措施[J]. 山西化工,2023,43(11):115-117,133.
[7] Yang X-L, Yang Z-G, Ding Q. Failure analysis of O-ring gaskets of the electric hydraulic system in the nuclear power plant[J]. Engineering failure analysis,2017,79:232-244.
[8] Morake J B, Mutua J M, Ruthandi M M, et al. Failure analysis of corroded heat exchanger CuNi tubes from a geothermal plant[J]. Engineering failure analysis, 2023, 153: 107543.
[9] Wei Liu,He hui. Failure analysis of steam pipe flange gasket[C]//2017 2nd International Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 2017).0[2024-04-07]. DOI:10.2991/amcce-17.2017.73.
[10] 不锈钢多元素含量测定火花放电原子发射光谱法(常规法):GB/T 11170—2008[S].
[11] 不锈钢冷轧钢板和钢带:GB/T 3280—2007[S].
[12] 刘宝军,李晓东. 奥氏体不锈钢过热器管漏泄原因分析[J]. 吉林电力,2006,34(3):28-30.
[13] 王影,谢国君,韩露,等. 法兰开裂原因分析[J]. 失效分析与预防,2016,11(6):369-371.
[14] 涂建国,徐鹏飞,王鑫,等. 304无缝不锈钢管漏气原因分析[J]. 热处理技术与装备,2023,44(6):43-45,50.
[15] Nuthalapati S, Kee K E, Pedapati S R, et al A review of chloride induced stress corrosion cracking characterization in austenitic stainless steels using acoustic emission technique [J]. Nuclear engineering and technology, 2024, 56(2): 688-706.
[16] Ehrnstén U, Andresen P L, Que Z. A review of stress corrosion cracking of austenitic stainless steels in PWR primary water [J]. Journal of nuclear materials, 2024, 588: 154815.

相似文献/References:

[1]卢 意,秦步祥,于 雯.一种新型超高分子量聚乙烯增强管的制备[J].石油化工设备,2017,(06):14.[doi:10.3969/j.issn.1000-7466.2017.06.003]
 LU Yi,QIN Bu-xiang,YU Wen.Preparation of a New Ultra-high Molecular Weight Polyethylene Reinforced Pipe[J].Petro-Chemical Equipment,2017,(01):14.[doi:10.3969/j.issn.1000-7466.2017.06.003]
[2]杨成鹏,姜 瑛,曹 永,等.海底管道水下法兰保护结构设计[J].石油化工设备,2018,47(03):27.[doi:10.3969/j.issn.1000-7466.2018.03.005]
 YANG Cheng-peng,JIANG Ying,CAO Yong,et al.Design of Subsea Flange Protector for Subsea Pipeline[J].Petro-Chemical Equipment,2018,47(01):27.[doi:10.3969/j.issn.1000-7466.2018.03.005]
[3]甘望星,匡良明.ASME法兰刚度与转角关系验证及转角极限确定[J].石油化工设备,2018,47(04):49.[doi:10.3969/j.issn.1000-7466.2018.04.008]
 GAN Wang-xing,KUANG Liang-ming.Verification of the Relationship between Rigidity and Rotation Angle of ASME Flange and the Determination of Rotation Angle Limit[J].Petro-Chemical Equipment,2018,47(01):49.[doi:10.3969/j.issn.1000-7466.2018.04.008]
[4]罗 懿.基于ANSYS Workbench有限元法的 外腐蚀管道失效压力研究[J].石油化工设备,2019,48(02):7.[doi:10.3969/j.issn.1000-7466.2019.02.002]
 LUO Yi.Study on the External Corrosion Failure Pressure of Pipeline Based on ANSYS Workbench Finite Element Method[J].Petro-Chemical Equipment,2019,48(01):7.[doi:10.3969/j.issn.1000-7466.2019.02.002]
[5]张 勇,王 辉,梁 斌,等.白油加氢管线0Cr18Ni10Ti法兰开裂失效分析[J].石油化工设备,2019,48(02):62.[doi:10.3969/j.issn.1000-7466.2019.02.013]
 ZHANG Yong,WANG Hui,LIANG Bin,et al.Failure Analysis of 0Cr18Ni10Ti Flange Cracking of White Oil Hydrogenation Pipeline[J].Petro-Chemical Equipment,2019,48(01):62.[doi:10.3969/j.issn.1000-7466.2019.02.013]
[6]张绍良,王剑波.优化法兰螺栓紧固方法促进挥发性有机物减排[J].石油化工设备,2019,48(03):70.[doi:10.3969/j.issn.1000-7466.2019.03.014]
 ZHANG Shao-liang,WANG Jian-bo.Optimized Flange Bolt Fastening Method for Improving Emission Reduction of Volatile Organic Compounds[J].Petro-Chemical Equipment,2019,48(01):70.[doi:10.3969/j.issn.1000-7466.2019.03.014]
[7]丁继超,何立东,万方腾,等.阻尼减振技术在加氢分馏塔进料管道上的应用[J].石油化工设备,2019,48(04):60.[doi:10.3969/j.issn.1000-7466.2019.04.011]
 DING Ji-chao,HE Li-dong,WAN Fang-teng,et al.Application of Damping Technique in Hydrogenation Fractionation Tower Feed Pipeline[J].Petro-Chemical Equipment,2019,48(01):60.[doi:10.3969/j.issn.1000-7466.2019.04.011]
[8]范嘉堃,陈海平,明红芳,等.计量撬沉降管道应力分析及抬升措施[J].石油化工设备,2020,(02):38.[doi:10.3969/j.issn.1000-7466.2020.02.008]
 FAN Jia-kun,CHEN Hai-ping,MING Hong-fang,et al.Stress Analysis and Lifting Measures for Settlement Pipeline of Metering Skid[J].Petro-Chemical Equipment,2020,(01):38.[doi:10.3969/j.issn.1000-7466.2020.02.008]
[9]王品贤,夏俏健,牛志勇,等.国内外管道设计标准中管道壁厚计算方法差异[J].石油化工设备,2020,(02):53.[doi:10.3969/j.issn.1000-7466.2020.02.010]
 WANG Pin-xian,XIA Qiao-jian,NIU Zhi-yong,et al.The Difference in Calculation Method of Pipeline Wall Thickness in Domestic and Foreign Pipeline Design Standards[J].Petro-Chemical Equipment,2020,(01):53.[doi:10.3969/j.issn.1000-7466.2020.02.010]
[10]吴伟阳.加氢裂化装置反应器出口管线法兰开裂原因分析[J].石油化工设备,2020,(05):86.[doi:10.3969/j.issn.10007466.2020.05.015]
 WU Wei yang.Flange Cracking Cause Analysis of Hydrocracking Reactor Outlet Pipeline[J].Petro-Chemical Equipment,2020,(01):86.[doi:10.3969/j.issn.10007466.2020.05.015]

备注/Memo

备注/Memo:
收稿日期: 2024-08-18
作者简介: 任方田(1973-),男,山东烟台人,工程师,学士,从事设备和技术管理工作。E-mail:ftren@whchem.com。
更新日期/Last Update: 2025-02-01