[1]徐 瑞,朱宏雷,邹建东,等.喷淋湿式蒸发空冷器研究现状与展望[J].石油化工设备,2025,54(01):43-54.[doi:10.3969/j.issn.1000-7466.2025.01.007]
 XU Rui,ZHU Hong-lei,ZOU Jian-dong,et al.Research Status and Prospects of Spray Wet Evaporative Air Cooled Heat Exchangers[J].Petro-Chemical Equipment,2025,54(01):43-54.[doi:10.3969/j.issn.1000-7466.2025.01.007]
点击复制

喷淋湿式蒸发空冷器研究现状与展望()
分享到:

石油化工设备[ISSN:1000-7466/CN:62-1078/TQ]

卷:
54
期数:
2025年01期
页码:
43-54
栏目:
技术综述
出版日期:
2025-01-25

文章信息/Info

Title:
Research Status and Prospects of Spray Wet Evaporative Air Cooled Heat Exchangers
文章编号:
1000-7466(2025)01-0043-12
作者:
徐 瑞朱宏雷邹建东杨春天张向南赵 昕
(甘肃蓝科石化高新装备股份有限公司,甘肃 兰州 730070)
Author(s):
XU RuiZHU Hong-leiZOU Jian-dongYANG Chun-tianZHANG Xiang-nanZHAO Xin
(Lanpec Technologies Limited, Lanzhou 730070, China )
关键词:
空冷器喷淋湿式液膜流动分布蒸发传热
Keywords:
air cooled heat exchanger spray wet type liquid film flow distribution evaporative heat transfer
分类号:
TQ051.5
DOI:
10.3969/j.issn.1000-7466.2025.01.007
文献标志码:
A
摘要:
冷却系统在石油化工、电力和供热等众多行业中必不可少。水冷却耗用大量水资源且经济性低,干式空冷体积大且受环境温度影响大,而湿式喷淋冷却系统兼顾了干式和水冷的优点,具有较大的应用潜力。从液膜流动分布、蒸发传热这2个方面对喷淋湿式蒸发空冷的机理研究热点及成果进行梳理,总结了与喷淋湿式蒸发空冷器性能优化密切相关的换热元件、结构改进、节水及漂移和抗冻抗蚀等4个方面的研究现状,对未来研究方法、研究方向等进行了展望。
Abstract:
The cooling system is a vital component in numerous industrial sectors, including petrochemicals, power generation, and heating. The consumption of water resources is considerable with water cooling, it’s economic efficiency is low. Dry air cooling has a considerable volume and is significantly influenced by ambient temperature. The spray wet evaporation cooling system is a promising technology that combines the advantages of dry and water cooling. This paper presents a summary of the research topics and findings related to the mechanisms of spray wet evaporation cooling, with a focus on the distribution of liquid film flows and evaporation heat transfer. Furthermore, it provides an overview of the current research status in four areas that are closely related to the optimisation of the performance of spray wet evaporation cooling towers. Specifically, it considers heat transfer elements, structural improvements, water saving, and drift and corrosion resistance. It provides an overview of future research methods, research directions, and other prospects.

参考文献/References:

[1] 董其伍,刘敏珊,苏立建. 管壳式换热器研究进展[J]. 化工设备与管道,2006,43(6):18-22.
[2] 郑津洋,董其伍,桑芝富. 过程设备设计[M]. 北京: 北京工业出版社, 2015.
[3] 兰州石油机械研究所. 换热器:第二版[M]. 北京: 中国石化出版社, 2013.
[4] 石油化学工业部炼油设计院. 炼油厂管式加热炉设计手册(上篇)[M]. 上海: 上海化工设计院石油化工设备设计建设组, 1977.
[5] 顾微藻. 强化传热[M].北京: 北京科学出版社, 1990.
[6] Lee M, Kang T, Kim Y. Air-side heat transfer characteristics of spiral-type circular fin-tube heat exchangers[J]. International journal of refrigeration, 2010, 33(2): 313-320.
[7] Pongsoi P, Pikulkajorn S, Wongwises S. Heat transfer and flow characteristics of spiral fin-and-tube heat exchangers: A review[J]. International journal of heat and mass transfer, 2014, 79: 417-431.
[8] Duan J, Xiong Y, Yang D. Study on the effect of multiple spiral fins for improved phase change process[J]. Applied thermal engineering, 2020, 169: 114966.
[9] Rajesh Babu C, Kumar P, Roy S, et al. CFD analysis of an economizer for heat transfer enhancement using serrated finned tube equipped with variable fin segments[J]. Materials today: Proceedings, 2021, 45: 222-230.
[10] N■ss E. Experimental investigation of heat transfer and pressure drop in serrated-fin tube bundles with staggered tube layouts[J]. Applied thermal engineering, 2010, 30(13): 1531-1537.
[11] Zhou H, Liu D, Sheng Q, et al. Research on gas side performance of staggered fin-tube bundles with different serrated fin geometries[J]. International journal of heat and mass transfer, 2020, 152: 119509.
[12] Pongsoi P, Promoppatum P, Pikulkajorn S, et al. Effect of fin pitches on the air-side performance of L-footed spiral fin-and-tube heat exchangers[J]. International journal of heat and mass transfer, 2013, 59: 75-82.
[13] Pongsoi P, Pikulkajorn S, Wongwises S. Experimental study on the air-side performance of a multipass parallel and counter cross-flow L-footed spiral fin-and-tube heat exchanger [J]. Heat transfer engineering, 2012, 33(15): 1251-1263.
[14] Tang L H, Zeng M, Wang Q W. Experimental and numerical investigation on air-side performance of fin-and-tube heat exchangers with various fin patterns [J]. Experimental thermal and fluid science, 2009, 33(5): 818-827.
[15] Kiatpachai P, Pikulkajorn S, Wongwises S. Air-side performance of serrated welded spiral fin-and-tube heat exchangers [J]. International journal of heat and mass transfer, 2015, 89: 724-732.
[16] Wan Z-p, Wang X-w, Zhang X-x, et al. Investigations on the condensation heat transfer performance of stainless steel edge-shaped finned tubes [J]. Journal of geat transfer, 2015, 138(3): 031902.1-031902.7.
[17] 张庆,王学生,阮伟程,等. 蒸发式空冷器低密度翅片管束干工况换热及阻力特性[J]. 华东理工大学学报(自然科学版),2017,43(4):578-583.
[18] 韩龙娜,史永征,李德英. 浅谈湿式空冷器[J]. 建筑节能,2015(1):10-12.
[19] 张斯亮,陈韶范,马金伟,等. 喷雾增湿空冷器优化设计[J]. 石油和化工设备,2021,24(2):40-42.
[20] 张子倩,张早校,张强. 干湿联合冷却系统技术发展现状及展望[J]. 化工进展,2021,40(1):21-30.
[21] 朱东生. 换热器技术及进展[M].北京:中国石化出版社, 2008.
[22] Hu X ,J A M. The intertube falling film: Part 1-Flow characteristics mode transitions, and hysteresis [J]. Journal of heat transfer, 1996, 118: 616-625.
[23] Kapoustina I M L S V. Fluid thickness measurement using near-infrared imaging [J]. Chemis ingenieur technik, 2019, 91(7): 1041-1048.
[24] Nusselt W .Die oberflachenkondensation des wasserdampfes [J]. Zeitschr Ver Deut Ing, 1916, 60(3): 541-546.
[25] 何茂刚,范华亮,王小飞,等. 水平管外降膜流动的膜厚测量和数值模拟[J].西安交通大学学报,2010,44(9):1-5.
[26] Zhao C-Y, Ji W-T, Jin P-H, et al. Hydrodynamic behaviors of the falling film flow on a horizontal tube and construction of new film thickness correlation[J]. International journal of heat and mass transfer, 2018, 119: 564-576.
[27] Qiu Q, Zhu X, Mu L, et al. Numerical study of falling film thickness over fully wetted horizontal round tube [J]. International journal of heat and mass transfer, 2015, 84: 893-897.
[28]Maliackal A K, Ganesan A R, Mani A. Interferometric analysis of flow around a horizontal tube falling film evaporator for MED systems [J]. International journal of thermal sciences, 2021, 161: 106745.
[29] Zhou Y, Cai Z, Ning Z, et al. Numerical simulation of double-phase coupled heat transfer process of horizontal-tube falling film evaporation [J]. Applied thermal engineering, 2017, 118: 33-40.
[30] Hou H, Bi Q, Ma H, et al. Distribution characteristics of falling film thickness around a horizontal tube[J]. Desalination, 2012, 285: 393-398.
[31] Zhang Y, Wang D, Liu Y, et al. Distribution characteristics of falling film thickness around a horizontal corrugated tube[J]. International journal of heat and mass transfer, 2020, 154: 119773.
[32] Qiu Q, Zhang X, Quan S, et al. 3D numerical study of the liquid film distribution on the surface of a horizontal-tube falling-film evaporator[J]. International journal of heat and mass transfer, 2018, 124: 943-952.
[33] Luo L Z, G M Pan,J H. Influence of oval-shaped tube on falling film flow characteristics on horizontal tube bundle [J]. Desalination and water treatment, 2015, 54(11): 2939-2950.
[34] Pu L, Li Q, Shao X, et al. Effects of tube shape on flow and heat transfer characteristics in falling film evaporation [J]. Applied thermal engineering, 2019, 148: 412-419.
[35] Li W, Wu X-Y, Luo Z, et al. Heat transfer characteristics of falling film evaporation on horizontal tube arrays[J]. International journal of heat and mass transfer, 2011, 54(9): 1986-1993.
[36] Jayakumar A, Balachandran A, Mani A, et al. Falling film thickness measurement using air-coupled ultrasonic transducer [J]. Experimental thermal and fluid science, 2019, 109: 109906.
[37] Chen X, Shen S, Wang Y, et al. Measurement on falling film thickness distribution around horizontal tube with laser-induced fluorescence technology [J]. International journal of heat and mass transfer, 2015, 89: 707-713.
[38] Eichinger S S T. Investigations of the spreading of falling liquid films in inclined tubes [J]. International journal of heat and mass transfer, 2018, 119: 586-600.
[39] 张亚东,张伟,秦朔. 喷雾冷却换热机理研究进展[J]. 制冷技术,2020,40(1):34-41,53.
[40] Pais M R C L C, MAGEFKEY E T. Surface roughness and its effect on the heat transfer mechanism in spray cooling [J]. Heat transfer, 1992, 114: 211-219.
[41] SILK E A G E L, SELVAM R P. Spray cooling heat transfer: Technology overview and assessment of fulture challenges for micro-gravity application [J]. Energy convers manage, 2008, 49(3): 453-468.
[42] J R Thome. Falling film evaporation :State-of-the-art review of recent work [J]. Enhanced heat transfer, 1999, 6: 263-277.
[43] Ribatski G, Jacobi A M. Falling-film evaporation on horizontal tubes—A critical review [J]. International journal of refrigeration, 2005, 28(5): 635-653.
[44] Zhao C-Y, Qi D, Ji W-T, et al. A comprehensive review on computational studies of falling film hydrodynamics and heat transfer on the horizontal tube and tube bundle [J]. Applied thermal engineering, 2022, 202: 117869.
[45] T R J. Laminar falling film flow and heat transfer cha-racteristics on horizontal tubes [J]. The Canadian journal of chemical engineering, 1981, 59: 213-222.
[46] Bergles a E C M C. An analytical and experimental study of falling-film evaporation on a horizontal tube [J]. Journal of heat transfer, 1987, 109: 983-990.
[47] Christians M, Thome J R. Falling film evaporation on enhanced tubes, part 1: Experimental results for pool boiling, onset-of-dryout and falling film evaporation [J]. International journal of refrigeration, 2012, 35(2): 300-312.
[48] Christians M, Thome J R. Falling film evaporation on enhanced tubes, part 2: Prediction methods and visualization [J]. International journal of refrigeration, 2012, 35(2): 313-324.
[49] Xingsen Mu,Shengqiang,Yong Yang,et al. Experimental study of falling film evaporation heat transfer coefficient on horizontal tube [J]. Desalination and water treatment, 2012, 50(1-3): 310-316.
[50] Cao C, Xie L, He X, et al. Numerical study on the flow and heat-transfer characteristics of horizontal finned-tube falling-film evaporation: Effects of liquid column spacing and wettability [J]. International journal of heat and mass transfer, 2022, 188: 122665.
[51] Zhao C-Y, Ji W-T, Jin P-H, et al. Heat transfer correlation of the falling film evaporation on a single horizontal smooth tube [J]. Applied thermal engineering, 2016, 103: 177-186.
[52] Ji W-T, Zhao E-T, Zhao C-Y, et al. Falling film evaporation and nucleate pool boiling heat transfer of R134a on the same enhanced tube [J]. Applied thermal engineering, 2019, 147: 113-121.
[53] Yang L P S S Q. Experimental study of falling film evaporation heat transfer outside horizontal tubes [J]. Desalination, 2008, 220(1-3): 654-660.
[54] Yan W-M, Pan C-W, Yang T-F, et al. Experimental study on fluid flow and heat transfer characteristics of falling film over tube bundle [J]. International journal of heat and mass transfer, 2019, 130: 9-24.
[55] Chien L H C R H. An experimental study of falling film evaporation on horizontal tubes using R-134a [J]. Journal of mechanics, 2012, 28(2): 319-327.
[56] 赵创要,樊菊芳,李安桂,等. 饱和温度及热流密度对水平管外降膜蒸发传热影响的实验研究[J]. 暖通空调,2020,50(5):106-110.
[57] Jige D, Miyata H, Inoue N. Falling film evaporation of R1234ze(E) and R245fa on a horizontal smooth tube [J].Experimental thermal and fluid science, 2019, 105: 58-66.
[58] Xiao L, Wu T, Feng S, et al. Experimental study on heat transfer enhancement of wavy finned flat tubes by water spray cooling [J]. International journal of heat and mass transfer, 2017, 110: 383-392.
[59] Yang L, Shen S. Experimental study of falling film evaporation heat transfer outside horizontal tubes [J]. Desalination, 2008, 220(1): 654-660.
[60] 牟兴森,杨勇,沈胜强. 海水淡化中降膜蒸发过程的实验研究[J]. 热科学与技术,2011,10(4):291-296.
[61] 蒋淳,陈振乾. 水平管外降膜蒸发流动和传热特性数值模拟[J]. 化工学报,2018,69(10):4224-4230.
[62] 张鸿,黄翔,杨立然,等. 复合式露点间接及板管式间接蒸发冷却器的试验研究[J]. 流体机械,2018,46(8):60-65.
[63] 贺红霞,黄翔,张鸿,等. 露点间接蒸发冷却器中布水与存水的试验研究[J]. 西安工程大学学报,2019,33(4):395-400.
[64] 张鸿.露点间接蒸发冷却器传热效能关键影响因素的研究[D].西安:西安工程大学,2019.
[65] 贺红霞.基于露点间接蒸发冷却器的数据中心用空调的研究[D].西安:西安工程大学,2020.
[66] Bustamante J G, Garimella S. Experimental assessment of flow distributors for falling-films over horizontal tube banks [J]. International journal of refrigeration, 2019, 101: 24-33.
[67] 沈胜强,陈学,牟兴森,等. 管间距对水平管降膜蒸发流动形态和传热的影响[J]. 哈尔滨工程大学学报,2014(12):1492-1496.
[68] J Mitrovic. Influence of tube spacing and flow rate on heat transfer from a horizontal tube to a falling liquid film [Z].The eighth international heat transfer conference. San Francisco,1986: 1949-1956.
[69] Chyu. An analytical and experimenntal study of falling-film evaporation on a horizontal tube [J]. Heat transfer ,1987, 109: 8.
[70] M. C. Falling film evaporation on horizontal tubes with smooth and structured surfaces [D].Iowa State University, 1984.
[71] Al W e. Flow patterns and mode transitions for falling-films on flat tubes[C]//Proceedings of the International Refrigeration and Air Conditioning Conference. Purdue:F, 2010.
[72] Zhao C-Y, Ji W-T, He Y-L, et al. A comprehensive numerical study on the subcooled falling film heat transfer on a horizontal smooth tube [J]. International journal of heat and mass transfer, 2018, 119: 259-270.
[73] Parker R O T R E. Research in evaporative cooling [J]. Chemical engineering and processing symposium series, 1962.
[74] Leidenfrost W K B. Evaporative cooling and heat transfer augmentation related to reduced condenser temperatures [J]. Heat transfer engineering, 1982, 3:38-59.
[75] Zheng W-Y, Zhu D-S, Zhou G-Y, et al. Thermal performance analysis of closed wet cooling towers under both unsaturated and supersaturated conditions [J]. International journal of heat and mass transfer, 2012, 55(25): 7803-7811.
[76] Stabat P, Marchio D. Simplified model for indirect-contact evaporative cooling-tower behaviour [J]. Applied energy, 2004, 78(4): 433-451.
[77] Hassab M A, Khamis Mansour M, Sadek L A, et al. Thermal and experimental analysis of cross-flow closed cooling tower[J]. Alexandria engineering journal, 2023, 69: 739-746.
[78] Zhao R, Bu S, Zhao X, et al. Study on thermal performance of new finned heat exchange tube bundles in cooling tower [J]. International journal of thermal sciences, 2021, 168: 107064.
[79] 卢炯. 水平管外蒸发式冷却换热过程的分析与实验研究 [D].广州:华南理工大学, 2023.
[80] Xie X, He C, Xu T, et al. Deciphering the thermal and hydraulic performances of closed wet cooling towers with plain, oval and longitudinal fin tubes [J]. Applied thermal engineering, 2017, 120: 203-218.
[81] 楚玉杰,袁益超. 螺旋翅片管空冷器换热与阻力性能研究及优化[J]. 化学工程,2021,49(4):29-34.
[82] 张庆. 干/湿工况翅片管束表面蒸发空冷热质传递机理与计算方法研究[D].上海:华东理工大学,2019.
[83] Pandelidis D, Dr?諭g M, Dr?諭g P, et al. Comparative analysis between traditional and M-Cycle based cooling tower[J]. International journal of heat and mass transfer, 2020, 159: 120124.
[84] 白桦,欧阳新萍,赵加普,等. 一种横流闭式冷却塔的实验与性能评价[J]. 热能动力工程,2020,35(4):181-186.
[85] Jiang J-J, Liu X-H, Jiang Y. Experimental and numerical analysis of a cross-flow closed wet cooling tower [J]. Applied thermal engineering, 2013, 61(2): 678-689.
[86] 王飞飞,杨永安,赵瑞昌,等. 不同进风方式下蒸发式冷凝器的研究[J]. 低温与超导,2018,46(10):55-59.
[87] He S, Gurgenci H, Guan Z, et al. Comparative study on the performance of natural draft dry, pre-cooled and wet cooling towers[J].Applied thermal engineering, 2016, 99: 103-113.
[88] 钱泰磊,郑伟业,朱冬生,等. 闭式冷却塔的影响因素分析[J]. 流体机械,2013(10):73-75,56.
[89] Zhou Y, Zhang P, Zhao J, et al. Experimental study on performance of a closed wet cooling tower for air wet-bulb temperature near 0 °C[J]. Journal of thermal science, 2019, 28(5): 1015-1023.
[90] Liu L, Xi Y, Zhang L, et al. Research on water saving performance of a new type of demisting cooler for cooling towers [J]. Chemical engineering and processing - Process intensification, 2023, 192: 109488.
[91] 袁威. 湿式冷却塔蒸发传质换热过程的主动抑制机制与节水研究[D]. 济南:山东大学,2021.
[92] Song Y , Wu G , Song B .Analysis of drift loss and concentration change of wet cooling tower[J].IOP Conference series: earth and environmental science, 2020, 569(1):012059.
[93] González Pedraza Oskar Javier,Pacheco Ibarra J Jesús, Carlos R M ,et al. Numerical study of the drift and evaporation of water droplets cooled down by a forced stream of air[J].Applied thermal engineering, 2018, 142:292-302.DOI:10.1016/j.applthermaleng.2018.07.011.
[94] Ruiz J, Navarro P, Hernández M, et al. Thermal performance and emissions analysis of a new cooling tower prototype[J]. Applied thermal engineering, 2022, 206: 118065.
[95] 王晓敏. 闭式循环冷却水系统设计要点探讨[J]. 工业用水与废水,2022,53(4):61-64.
[96] Xu Z, Tang J, Wu Q, et al. Research on heat transfer and frost resistance performance of the closed wet cooling towers tubes [J]. International journal of thermal sciences, 2023, 189: 108257.
[97] 赵巍,陈琴珠,王学生,等. 复合管蒸发式冷却器的传热性能[J]. 实验室研究与探索,2016,35(3):70-72,142.
[98] 戴晨影. 鼓包板片蒸发式冷凝器流动特性与传热性能研究[D].广州:华南理工大学, 2015.
[99] 任勤. 凸凹板蒸发式冷凝器强化传热及性能分析[D].广州:华南理工大学,2015.
[100] 王红根. 板管型蒸发式冷凝器传热与流阻特性及结构 优化研究[D].广州:华南理工大学, 2016.
[101] 孙荷静. 波纹板蒸发式冷凝器流体流动特性及传热实验研究[D].广州:华南理工大学, 2010.
[102] 路紫明. 板式蒸发式冷却器的性能分析及优化设计[D]. 济南:山东建筑大学,2023.
[103] 陆刘记,张胜利,侯俊峰,等. 肋片板式蒸发冷凝器传热性能及优化研究[J]. 低温与超导,2022,50(1):27-32,75.
[104] 刘旭. 内翅板式蒸发冷凝器的性能分析及试验研究[D]. 郑州:郑州轻工业学院,2016.
[105] Jin Q, Yu Y, Zhang J. Numerical and experimental study on intermittent spray cooling for plate-fin heat exchanger [J]. Applied thermal engineering, 2023, 234: 121328.
[106] Baamrani H E, Yagour A, Aharoune A, et al. Experimental study of falling film evaporation on a vertical plate[J]. Thermal science and engineering progress, 2023, 39: 101744.
[107] De Antonellis S, Cignatta L, Facchini C, et al. Effect of heat exchanger plates geometry on performance of an indirect evaporative cooling system[J]. Applied thermal engineering, 2020, 173: 115200.
[108] 伍乘星. 板式换热器波纹板片成形精度定量评估技术研究[D]. 武汉:华中科技大学,2020.
[109] Zhang G A, Liu D, Li Y Z, et al. Corrosion behaviour of N80 carbon steel in formation water under dynamic supercritical CO2 condition[J]. Corrosion science, 2017, 120: 107-120.
[110] Yang Y, Luo X, Hong C, et al. Characterization, formation and development of scales on L80 steel tube resulting from seawater injection treatment [J]. Journal of petroleum science and engineering, 2020, 193: 107433.
[111] Singh A, Ansari K R, Quraishi M A, et al. Synthesis and investigation of pyran derivatives as acidizing corrosion inhibitors for N80 steel in hydrochloric acid: Theoretical and experimental approaches [J]. Journal of alloys and compounds, 2018, 762: 347-362.
[112] 冯文贵,魏润芝,王胜,等. 碳钢在水电厂冷却水中的腐蚀行为及腐蚀机理研究[J]. 材料保护,2022,55(7):119-127.
[113] 王彤,滕维忠,乔越,等. 敞开式循环冷却水系统碳钢管道腐蚀泄漏的原因[J]. 腐蚀与防护,2023,44(8):89-94. [114] 武斌斌,王雪清,甄毅. 闭式循环冷却水系统总铁超标原因分析及解决对策[J]. 当代化工,2023,52(2):386-389.
[115] 孙灵芳,杨 徐. 换热设备污垢与对策[M]. 北京: 科学出版社, 2004.
[116] 李永康,万超,杨青,等. 凝汽器靶向投球胶球清洗技术[J]. 热力发电,2018,47(4):131-134.
[117] 黄传昊,卢金锁,王峰慧,等. 基于酸碱平衡曝气法的除垢设备开发及效果评价[J]. 中国给水排水,2019,35(5):43-47.
[118] 苏艳,杨阳,古克亚,等. 循环冷却水系统的电化学除垢技术研究进展[J]. 工业水处理,2023,43(8):30-37.
[119] 赵彦,章立新,高明,等. 循环冷却水系统除碳酸钙污垢的研究进展[J]. 精细化工,2020,37(12):2447-2456.
[120] 任广欣,张鹏,侯建平,等. 塔二联轻烃回收装置循环冷却水系统腐蚀结垢分析及对策[J]. 油气田地面工程,2022,41(2):64-67.

相似文献/References:

[1]刘 锋,张 宇,肇 群.空冷器用高压水清洗与雾化降温系统集成设计与开发[J].石油化工设备,2020,(03):29.[doi:10.3969/j.issn.1000-7466.2020.03.005]
 LIU Feng,ZHANG Yu,ZHAO Qun.System Integration Design and Development of High PressureWater Cleaning and Atomization Cooling for Air Cooler[J].Petro-Chemical Equipment,2020,(01):29.[doi:10.3969/j.issn.1000-7466.2020.03.005]
[2]王朝平.蜡油加氢装置空冷器入口管泄漏原因分析及对策[J].石油化工设备,2021,(01):66.[doi:10.3969/j.issn.1000—7466.2021.01.013]
 WANG Chao-ping.Cause Analysis and Solution for Inlet Pipe Leakage of Air Cooler in Wax Oil Hydrogenation Unit[J].Petro-Chemical Equipment,2021,(01):66.[doi:10.3969/j.issn.1000—7466.2021.01.013]
[3]郭俊峰.浅谈高压空冷器设计与制造[J].石油化工设备,2022,(05):87.[doi:10.3969/j.issn.1000-7466.2022.05.015]
 GUO Jun-feng.Brief Review on Design and Manufacture of High Pressure Air Cooler[J].Petro-Chemical Equipment,2022,(01):87.[doi:10.3969/j.issn.1000-7466.2022.05.015]

备注/Memo

备注/Memo:
收稿日期: 2024-08-09
作者简介:徐 瑞(1997-),男,陕西商洛人,硕士,从事换热设备设计与技术研发工作。
通信作者:邹建东(1968-),男,甘肃兰州人,教授级高级工程师,学士,长期从事热交换器设计与技术研发工作。
更新日期/Last Update: 2025-02-01