参考文献/References:
[1] 董其伍,刘敏珊,苏立建. 管壳式换热器研究进展[J]. 化工设备与管道,2006,43(6):18-22.
[2] 郑津洋,董其伍,桑芝富. 过程设备设计[M]. 北京: 北京工业出版社, 2015.
[3] 兰州石油机械研究所. 换热器:第二版[M]. 北京: 中国石化出版社, 2013.
[4] 石油化学工业部炼油设计院. 炼油厂管式加热炉设计手册(上篇)[M]. 上海: 上海化工设计院石油化工设备设计建设组, 1977.
[5] 顾微藻. 强化传热[M].北京: 北京科学出版社, 1990.
[6] Lee M, Kang T, Kim Y. Air-side heat transfer characteristics of spiral-type circular fin-tube heat exchangers[J]. International journal of refrigeration, 2010, 33(2): 313-320.
[7] Pongsoi P, Pikulkajorn S, Wongwises S. Heat transfer and flow characteristics of spiral fin-and-tube heat exchangers: A review[J]. International journal of heat and mass transfer, 2014, 79: 417-431.
[8] Duan J, Xiong Y, Yang D. Study on the effect of multiple spiral fins for improved phase change process[J]. Applied thermal engineering, 2020, 169: 114966.
[9] Rajesh Babu C, Kumar P, Roy S, et al. CFD analysis of an economizer for heat transfer enhancement using serrated finned tube equipped with variable fin segments[J]. Materials today: Proceedings, 2021, 45: 222-230.
[10] N■ss E. Experimental investigation of heat transfer and pressure drop in serrated-fin tube bundles with staggered tube layouts[J]. Applied thermal engineering, 2010, 30(13): 1531-1537.
[11] Zhou H, Liu D, Sheng Q, et al. Research on gas side performance of staggered fin-tube bundles with different serrated fin geometries[J]. International journal of heat and mass transfer, 2020, 152: 119509.
[12] Pongsoi P, Promoppatum P, Pikulkajorn S, et al. Effect of fin pitches on the air-side performance of L-footed spiral fin-and-tube heat exchangers[J]. International journal of heat and mass transfer, 2013, 59: 75-82.
[13] Pongsoi P, Pikulkajorn S, Wongwises S. Experimental study on the air-side performance of a multipass parallel and counter cross-flow L-footed spiral fin-and-tube heat exchanger [J]. Heat transfer engineering, 2012, 33(15): 1251-1263.
[14] Tang L H, Zeng M, Wang Q W. Experimental and numerical investigation on air-side performance of fin-and-tube heat exchangers with various fin patterns [J]. Experimental thermal and fluid science, 2009, 33(5): 818-827.
[15] Kiatpachai P, Pikulkajorn S, Wongwises S. Air-side performance of serrated welded spiral fin-and-tube heat exchangers [J]. International journal of heat and mass transfer, 2015, 89: 724-732.
[16] Wan Z-p, Wang X-w, Zhang X-x, et al. Investigations on the condensation heat transfer performance of stainless steel edge-shaped finned tubes [J]. Journal of geat transfer, 2015, 138(3): 031902.1-031902.7.
[17] 张庆,王学生,阮伟程,等. 蒸发式空冷器低密度翅片管束干工况换热及阻力特性[J]. 华东理工大学学报(自然科学版),2017,43(4):578-583.
[18] 韩龙娜,史永征,李德英. 浅谈湿式空冷器[J]. 建筑节能,2015(1):10-12.
[19] 张斯亮,陈韶范,马金伟,等. 喷雾增湿空冷器优化设计[J]. 石油和化工设备,2021,24(2):40-42.
[20] 张子倩,张早校,张强. 干湿联合冷却系统技术发展现状及展望[J]. 化工进展,2021,40(1):21-30.
[21] 朱东生. 换热器技术及进展[M].北京:中国石化出版社, 2008.
[22] Hu X ,J A M. The intertube falling film: Part 1-Flow characteristics mode transitions, and hysteresis [J]. Journal of heat transfer, 1996, 118: 616-625.
[23] Kapoustina I M L S V. Fluid thickness measurement using near-infrared imaging [J]. Chemis ingenieur technik, 2019, 91(7): 1041-1048.
[24] Nusselt W .Die oberflachenkondensation des wasserdampfes [J]. Zeitschr Ver Deut Ing, 1916, 60(3): 541-546.
[25] 何茂刚,范华亮,王小飞,等. 水平管外降膜流动的膜厚测量和数值模拟[J].西安交通大学学报,2010,44(9):1-5.
[26] Zhao C-Y, Ji W-T, Jin P-H, et al. Hydrodynamic behaviors of the falling film flow on a horizontal tube and construction of new film thickness correlation[J]. International journal of heat and mass transfer, 2018, 119: 564-576.
[27] Qiu Q, Zhu X, Mu L, et al. Numerical study of falling film thickness over fully wetted horizontal round tube [J]. International journal of heat and mass transfer, 2015, 84: 893-897.
[28]Maliackal A K, Ganesan A R, Mani A. Interferometric analysis of flow around a horizontal tube falling film evaporator for MED systems [J]. International journal of thermal sciences, 2021, 161: 106745.
[29] Zhou Y, Cai Z, Ning Z, et al. Numerical simulation of double-phase coupled heat transfer process of horizontal-tube falling film evaporation [J]. Applied thermal engineering, 2017, 118: 33-40.
[30] Hou H, Bi Q, Ma H, et al. Distribution characteristics of falling film thickness around a horizontal tube[J]. Desalination, 2012, 285: 393-398.
[31] Zhang Y, Wang D, Liu Y, et al. Distribution characteristics of falling film thickness around a horizontal corrugated tube[J]. International journal of heat and mass transfer, 2020, 154: 119773.
[32] Qiu Q, Zhang X, Quan S, et al. 3D numerical study of the liquid film distribution on the surface of a horizontal-tube falling-film evaporator[J]. International journal of heat and mass transfer, 2018, 124: 943-952.
[33] Luo L Z, G M Pan,J H. Influence of oval-shaped tube on falling film flow characteristics on horizontal tube bundle [J]. Desalination and water treatment, 2015, 54(11): 2939-2950.
[34] Pu L, Li Q, Shao X, et al. Effects of tube shape on flow and heat transfer characteristics in falling film evaporation [J]. Applied thermal engineering, 2019, 148: 412-419.
[35] Li W, Wu X-Y, Luo Z, et al. Heat transfer characteristics of falling film evaporation on horizontal tube arrays[J]. International journal of heat and mass transfer, 2011, 54(9): 1986-1993.
[36] Jayakumar A, Balachandran A, Mani A, et al. Falling film thickness measurement using air-coupled ultrasonic transducer [J]. Experimental thermal and fluid science, 2019, 109: 109906.
[37] Chen X, Shen S, Wang Y, et al. Measurement on falling film thickness distribution around horizontal tube with laser-induced fluorescence technology [J]. International journal of heat and mass transfer, 2015, 89: 707-713.
[38] Eichinger S S T. Investigations of the spreading of falling liquid films in inclined tubes [J]. International journal of heat and mass transfer, 2018, 119: 586-600.
[39] 张亚东,张伟,秦朔. 喷雾冷却换热机理研究进展[J]. 制冷技术,2020,40(1):34-41,53.
[40] Pais M R C L C, MAGEFKEY E T. Surface roughness and its effect on the heat transfer mechanism in spray cooling [J]. Heat transfer, 1992, 114: 211-219.
[41] SILK E A G E L, SELVAM R P. Spray cooling heat transfer: Technology overview and assessment of fulture challenges for micro-gravity application [J]. Energy convers manage, 2008, 49(3): 453-468.
[42] J R Thome. Falling film evaporation :State-of-the-art review of recent work [J]. Enhanced heat transfer, 1999, 6: 263-277.
[43] Ribatski G, Jacobi A M. Falling-film evaporation on horizontal tubes—A critical review [J]. International journal of refrigeration, 2005, 28(5): 635-653.
[44] Zhao C-Y, Qi D, Ji W-T, et al. A comprehensive review on computational studies of falling film hydrodynamics and heat transfer on the horizontal tube and tube bundle [J]. Applied thermal engineering, 2022, 202: 117869.
[45] T R J. Laminar falling film flow and heat transfer cha-racteristics on horizontal tubes [J]. The Canadian journal of chemical engineering, 1981, 59: 213-222.
[46] Bergles a E C M C. An analytical and experimental study of falling-film evaporation on a horizontal tube [J]. Journal of heat transfer, 1987, 109: 983-990.
[47] Christians M, Thome J R. Falling film evaporation on enhanced tubes, part 1: Experimental results for pool boiling, onset-of-dryout and falling film evaporation [J]. International journal of refrigeration, 2012, 35(2): 300-312.
[48] Christians M, Thome J R. Falling film evaporation on enhanced tubes, part 2: Prediction methods and visualization [J]. International journal of refrigeration, 2012, 35(2): 313-324.
[49] Xingsen Mu,Shengqiang,Yong Yang,et al. Experimental study of falling film evaporation heat transfer coefficient on horizontal tube [J]. Desalination and water treatment, 2012, 50(1-3): 310-316.
[50] Cao C, Xie L, He X, et al. Numerical study on the flow and heat-transfer characteristics of horizontal finned-tube falling-film evaporation: Effects of liquid column spacing and wettability [J]. International journal of heat and mass transfer, 2022, 188: 122665.
[51] Zhao C-Y, Ji W-T, Jin P-H, et al. Heat transfer correlation of the falling film evaporation on a single horizontal smooth tube [J]. Applied thermal engineering, 2016, 103: 177-186.
[52] Ji W-T, Zhao E-T, Zhao C-Y, et al. Falling film evaporation and nucleate pool boiling heat transfer of R134a on the same enhanced tube [J]. Applied thermal engineering, 2019, 147: 113-121.
[53] Yang L P S S Q. Experimental study of falling film evaporation heat transfer outside horizontal tubes [J]. Desalination, 2008, 220(1-3): 654-660.
[54] Yan W-M, Pan C-W, Yang T-F, et al. Experimental study on fluid flow and heat transfer characteristics of falling film over tube bundle [J]. International journal of heat and mass transfer, 2019, 130: 9-24.
[55] Chien L H C R H. An experimental study of falling film evaporation on horizontal tubes using R-134a [J]. Journal of mechanics, 2012, 28(2): 319-327.
[56] 赵创要,樊菊芳,李安桂,等. 饱和温度及热流密度对水平管外降膜蒸发传热影响的实验研究[J]. 暖通空调,2020,50(5):106-110.
[57] Jige D, Miyata H, Inoue N. Falling film evaporation of R1234ze(E) and R245fa on a horizontal smooth tube [J].Experimental thermal and fluid science, 2019, 105: 58-66.
[58] Xiao L, Wu T, Feng S, et al. Experimental study on heat transfer enhancement of wavy finned flat tubes by water spray cooling [J]. International journal of heat and mass transfer, 2017, 110: 383-392.
[59] Yang L, Shen S. Experimental study of falling film evaporation heat transfer outside horizontal tubes [J]. Desalination, 2008, 220(1): 654-660.
[60] 牟兴森,杨勇,沈胜强. 海水淡化中降膜蒸发过程的实验研究[J]. 热科学与技术,2011,10(4):291-296.
[61] 蒋淳,陈振乾. 水平管外降膜蒸发流动和传热特性数值模拟[J]. 化工学报,2018,69(10):4224-4230.
[62] 张鸿,黄翔,杨立然,等. 复合式露点间接及板管式间接蒸发冷却器的试验研究[J]. 流体机械,2018,46(8):60-65.
[63] 贺红霞,黄翔,张鸿,等. 露点间接蒸发冷却器中布水与存水的试验研究[J]. 西安工程大学学报,2019,33(4):395-400.
[64] 张鸿.露点间接蒸发冷却器传热效能关键影响因素的研究[D].西安:西安工程大学,2019.
[65] 贺红霞.基于露点间接蒸发冷却器的数据中心用空调的研究[D].西安:西安工程大学,2020.
[66] Bustamante J G, Garimella S. Experimental assessment of flow distributors for falling-films over horizontal tube banks [J]. International journal of refrigeration, 2019, 101: 24-33.
[67] 沈胜强,陈学,牟兴森,等. 管间距对水平管降膜蒸发流动形态和传热的影响[J]. 哈尔滨工程大学学报,2014(12):1492-1496.
[68] J Mitrovic. Influence of tube spacing and flow rate on heat transfer from a horizontal tube to a falling liquid film [Z].The eighth international heat transfer conference. San Francisco,1986: 1949-1956.
[69] Chyu. An analytical and experimenntal study of falling-film evaporation on a horizontal tube [J]. Heat transfer ,1987, 109: 8.
[70] M. C. Falling film evaporation on horizontal tubes with smooth and structured surfaces [D].Iowa State University, 1984.
[71] Al W e. Flow patterns and mode transitions for falling-films on flat tubes[C]//Proceedings of the International Refrigeration and Air Conditioning Conference. Purdue:F, 2010.
[72] Zhao C-Y, Ji W-T, He Y-L, et al. A comprehensive numerical study on the subcooled falling film heat transfer on a horizontal smooth tube [J]. International journal of heat and mass transfer, 2018, 119: 259-270.
[73] Parker R O T R E. Research in evaporative cooling [J]. Chemical engineering and processing symposium series, 1962.
[74] Leidenfrost W K B. Evaporative cooling and heat transfer augmentation related to reduced condenser temperatures [J]. Heat transfer engineering, 1982, 3:38-59.
[75] Zheng W-Y, Zhu D-S, Zhou G-Y, et al. Thermal performance analysis of closed wet cooling towers under both unsaturated and supersaturated conditions [J]. International journal of heat and mass transfer, 2012, 55(25): 7803-7811.
[76] Stabat P, Marchio D. Simplified model for indirect-contact evaporative cooling-tower behaviour [J]. Applied energy, 2004, 78(4): 433-451.
[77] Hassab M A, Khamis Mansour M, Sadek L A, et al. Thermal and experimental analysis of cross-flow closed cooling tower[J]. Alexandria engineering journal, 2023, 69: 739-746.
[78] Zhao R, Bu S, Zhao X, et al. Study on thermal performance of new finned heat exchange tube bundles in cooling tower [J]. International journal of thermal sciences, 2021, 168: 107064.
[79] 卢炯. 水平管外蒸发式冷却换热过程的分析与实验研究 [D].广州:华南理工大学, 2023.
[80] Xie X, He C, Xu T, et al. Deciphering the thermal and hydraulic performances of closed wet cooling towers with plain, oval and longitudinal fin tubes [J]. Applied thermal engineering, 2017, 120: 203-218.
[81] 楚玉杰,袁益超. 螺旋翅片管空冷器换热与阻力性能研究及优化[J]. 化学工程,2021,49(4):29-34.
[82] 张庆. 干/湿工况翅片管束表面蒸发空冷热质传递机理与计算方法研究[D].上海:华东理工大学,2019.
[83] Pandelidis D, Dr?諭g M, Dr?諭g P, et al. Comparative analysis between traditional and M-Cycle based cooling tower[J]. International journal of heat and mass transfer, 2020, 159: 120124.
[84] 白桦,欧阳新萍,赵加普,等. 一种横流闭式冷却塔的实验与性能评价[J]. 热能动力工程,2020,35(4):181-186.
[85] Jiang J-J, Liu X-H, Jiang Y. Experimental and numerical analysis of a cross-flow closed wet cooling tower [J]. Applied thermal engineering, 2013, 61(2): 678-689.
[86] 王飞飞,杨永安,赵瑞昌,等. 不同进风方式下蒸发式冷凝器的研究[J]. 低温与超导,2018,46(10):55-59.
[87] He S, Gurgenci H, Guan Z, et al. Comparative study on the performance of natural draft dry, pre-cooled and wet cooling towers[J].Applied thermal engineering, 2016, 99: 103-113.
[88] 钱泰磊,郑伟业,朱冬生,等. 闭式冷却塔的影响因素分析[J]. 流体机械,2013(10):73-75,56.
[89] Zhou Y, Zhang P, Zhao J, et al. Experimental study on performance of a closed wet cooling tower for air wet-bulb temperature near 0 °C[J]. Journal of thermal science, 2019, 28(5): 1015-1023.
[90] Liu L, Xi Y, Zhang L, et al. Research on water saving performance of a new type of demisting cooler for cooling towers [J]. Chemical engineering and processing - Process intensification, 2023, 192: 109488.
[91] 袁威. 湿式冷却塔蒸发传质换热过程的主动抑制机制与节水研究[D]. 济南:山东大学,2021.
[92] Song Y , Wu G , Song B .Analysis of drift loss and concentration change of wet cooling tower[J].IOP Conference series: earth and environmental science, 2020, 569(1):012059.
[93] González Pedraza Oskar Javier,Pacheco Ibarra J Jesús, Carlos R M ,et al. Numerical study of the drift and evaporation of water droplets cooled down by a forced stream of air[J].Applied thermal engineering, 2018, 142:292-302.DOI:10.1016/j.applthermaleng.2018.07.011.
[94] Ruiz J, Navarro P, Hernández M, et al. Thermal performance and emissions analysis of a new cooling tower prototype[J]. Applied thermal engineering, 2022, 206: 118065.
[95] 王晓敏. 闭式循环冷却水系统设计要点探讨[J]. 工业用水与废水,2022,53(4):61-64.
[96] Xu Z, Tang J, Wu Q, et al. Research on heat transfer and frost resistance performance of the closed wet cooling towers tubes [J]. International journal of thermal sciences, 2023, 189: 108257.
[97] 赵巍,陈琴珠,王学生,等. 复合管蒸发式冷却器的传热性能[J]. 实验室研究与探索,2016,35(3):70-72,142.
[98] 戴晨影. 鼓包板片蒸发式冷凝器流动特性与传热性能研究[D].广州:华南理工大学, 2015.
[99] 任勤. 凸凹板蒸发式冷凝器强化传热及性能分析[D].广州:华南理工大学,2015.
[100] 王红根. 板管型蒸发式冷凝器传热与流阻特性及结构 优化研究[D].广州:华南理工大学, 2016.
[101] 孙荷静. 波纹板蒸发式冷凝器流体流动特性及传热实验研究[D].广州:华南理工大学, 2010.
[102] 路紫明. 板式蒸发式冷却器的性能分析及优化设计[D]. 济南:山东建筑大学,2023.
[103] 陆刘记,张胜利,侯俊峰,等. 肋片板式蒸发冷凝器传热性能及优化研究[J]. 低温与超导,2022,50(1):27-32,75.
[104] 刘旭. 内翅板式蒸发冷凝器的性能分析及试验研究[D]. 郑州:郑州轻工业学院,2016.
[105] Jin Q, Yu Y, Zhang J. Numerical and experimental study on intermittent spray cooling for plate-fin heat exchanger [J]. Applied thermal engineering, 2023, 234: 121328.
[106] Baamrani H E, Yagour A, Aharoune A, et al. Experimental study of falling film evaporation on a vertical plate[J]. Thermal science and engineering progress, 2023, 39: 101744.
[107] De Antonellis S, Cignatta L, Facchini C, et al. Effect of heat exchanger plates geometry on performance of an indirect evaporative cooling system[J]. Applied thermal engineering, 2020, 173: 115200.
[108] 伍乘星. 板式换热器波纹板片成形精度定量评估技术研究[D]. 武汉:华中科技大学,2020.
[109] Zhang G A, Liu D, Li Y Z, et al. Corrosion behaviour of N80 carbon steel in formation water under dynamic supercritical CO2 condition[J]. Corrosion science, 2017, 120: 107-120.
[110] Yang Y, Luo X, Hong C, et al. Characterization, formation and development of scales on L80 steel tube resulting from seawater injection treatment [J]. Journal of petroleum science and engineering, 2020, 193: 107433.
[111] Singh A, Ansari K R, Quraishi M A, et al. Synthesis and investigation of pyran derivatives as acidizing corrosion inhibitors for N80 steel in hydrochloric acid: Theoretical and experimental approaches [J]. Journal of alloys and compounds, 2018, 762: 347-362.
[112] 冯文贵,魏润芝,王胜,等. 碳钢在水电厂冷却水中的腐蚀行为及腐蚀机理研究[J]. 材料保护,2022,55(7):119-127.
[113] 王彤,滕维忠,乔越,等. 敞开式循环冷却水系统碳钢管道腐蚀泄漏的原因[J]. 腐蚀与防护,2023,44(8):89-94. [114] 武斌斌,王雪清,甄毅. 闭式循环冷却水系统总铁超标原因分析及解决对策[J]. 当代化工,2023,52(2):386-389.
[115] 孙灵芳,杨 徐. 换热设备污垢与对策[M]. 北京: 科学出版社, 2004.
[116] 李永康,万超,杨青,等. 凝汽器靶向投球胶球清洗技术[J]. 热力发电,2018,47(4):131-134.
[117] 黄传昊,卢金锁,王峰慧,等. 基于酸碱平衡曝气法的除垢设备开发及效果评价[J]. 中国给水排水,2019,35(5):43-47.
[118] 苏艳,杨阳,古克亚,等. 循环冷却水系统的电化学除垢技术研究进展[J]. 工业水处理,2023,43(8):30-37.
[119] 赵彦,章立新,高明,等. 循环冷却水系统除碳酸钙污垢的研究进展[J]. 精细化工,2020,37(12):2447-2456.
[120] 任广欣,张鹏,侯建平,等. 塔二联轻烃回收装置循环冷却水系统腐蚀结垢分析及对策[J]. 油气田地面工程,2022,41(2):64-67.