[1]吴思拓,兰雅梅.基于计算流体力学的抛物面壁旋流器数值仿真研究[J].石油化工设备,2025,54(01):33-42.[doi:10.3969/j.issn.1000-7466.2025.01.006]
 WU Si-tuo,LAN Ya-mei.Numerical Simulation Study of Parabolic Wall Cyclone Based on Computational Fluid Dynamies[J].Petro-Chemical Equipment,2025,54(01):33-42.[doi:10.3969/j.issn.1000-7466.2025.01.006]
点击复制

基于计算流体力学的抛物面壁旋流器数值仿真研究()
分享到:

石油化工设备[ISSN:1000-7466/CN:62-1078/TQ]

卷:
54
期数:
2025年01期
页码:
33-42
栏目:
设计计算
出版日期:
2025-01-25

文章信息/Info

Title:
Numerical Simulation Study of Parabolic Wall Cyclone Based on Computational Fluid Dynamies
文章编号:
1000-7466(2025)01-0033-10
作者:
吴思拓兰雅梅
(上海海洋大学 工程学院,上海 201306)
Author(s):
WU Si-tuo LAN Ya-mei
(Engineering College,Shanghai Ocean University,Shanghai 201306,China)
关键词:
旋流器抛物面壁分离效率结构参数数值模拟优化
Keywords:
hydrocyclone parabolic wall separation efficiency structural parameters numerical simulation optimization
分类号:
TQ050.8+4
DOI:
10.3969/j.issn.1000-7466.2025.01.006
文献标志码:
A
摘要:
为了进一步提高小型水力旋流器分离细微颗粒的能力,提出一种新型抛物面壁水力旋流器。应用计算流体力学软件Fluent分析比较了抛物面壁和圆锥面壁在不同条件下的分离特性、内部流场及颗粒物轨迹规律。在综合考虑分离效率以及体积大小的基础上,对抛物面壁进行选型优化。结果表明,抛物面壁旋流器各项分离性能的指标均更佳,压力梯度与速度梯度优势更明显,整体分离效率更高。得到最佳结构参数为,底流口直径8 mm、锥体高度175.54 mm,抛物线方程为y=-0.391 64x2+19.716 6x-318.14。
Abstract:
In order to enhance the efficacy of small hydrocyclones in the separation of fine particles, a new type of parabolic wall hydrocyclone was proposed. Computational fluid dynamics software Fluent was employed to analyse and compare the separation characteristics, internal flow field and particle trajectory law of parabolic and conical walls under different conditions. In light of the aforementioned criteria, the parabolic wall was selected and optimised. The results demonstrate that the new parabolic wall cyclone exhibits superior separation performance indicators, a more pronounced pressure and velocity gradient, and enhanced overall separation efficiency. The optimal parameters are as follows: the diameter of the bottom flow opening is 8 mm, the height of the cone is 175.54 mm, and the parabolic equation is y=-0.391 64 x2+19.716 6x-318.14.

参考文献/References:

[1] E Dianyu,Fan Haihan,Su Zhongfang,et al. Numerical study of the multiphase flows and separation performance of hydrocyclone with tapered cross-section inlet[J]. Powder technology,2023,416:118208.
[2] Caie Zhang,Dezhou Wei,Baoyu Cui,et al. Effects of curvature radius on separation behaviors of the hydrocyclone with a tangent-circle inlet[J]. Powder technology,2017,305:156-165.
[3] Romanus Krisantus Tue Nenu,Hideto Yoshida. Comparison of separation performance between single and two inlets hydrocyclones[J]. Advanced powder technology,2008,20 (2):195-202.
[4] Inès Mokni,Hatem Dhaouadi,Philippe Bournot,et al. Numerical investigation of the effect of the cylindrical height on separation performances of uniflow hydrocyclone[J]. Chemical engineering science,2015,122:500-513.
[5] Hou Duanxu,Zhao Qiang,Cui Baoyu,et al. Geometrical configuration of hydrocyclone for improving the separation performance[J]. Advanced powder technology,2022,33 (2):103419.
[6] S Noroozi,S H Hashemabadi. CFD analysis of inlet chamber body profile effects on de-oiling hydrocyclone efficiency[J]. Chemical engineering research and design,2010,89 (7):968-977.
[7] 张彩娥,张铭宇,史济泓,等. 基于内部流场特性的旋流器内溢流管长度优化[J]. 金属矿山,2023(6):167-172.
[8] 兰雅梅,张婷婷,王世明,等. 旋流器结构参数对其性能的影响分析[J]. 化工机械,2021,48(5):678-682.
[9] M Ghodrat,S B Kuang,A B Yu,et al. Numerical analysis of hydrocyclones with different vortex finder configurations[J]. Minerals engineering,2014,63:125-138.
[10] 褚良银. 锥齿形高效水力旋流器:CN93229713.7[P]. 1994-11-30.
[11] Chu-Chiao Wang,Rome-Ming Wu. Experimental and simulation of a novel hydrocyclone-tubular membrane as overflow pipe[J]. Separation and purification technology, 2018,198:60-67.
[12] Ullmann Grégori,Gon?覶alves Suélen Mara,Kyriakidis Yanne Novais,et al. Optimization study of thickener hydrocyclones[J]. Minerals engineering, 2021, 170: 107066.
[13] 魏可峰,赵强,崔晓亮,等. 锥角对水力旋流器流场及分离性能影响的数值试验研究[J]. 金属矿山,2019(4):147-153.
[14] Padhi Mandakini,Vakamalla Teja Reddy,Mangadoddy Narasimha. Iron ore slimes beneficiation using optimised hydrocyclone operation[J]. Chemosphere, 2022, 301:134513.
[15] Teja Reddy Vakamalla,Veera Bhadra Rao Koruprolu,Rakesh Arugonda,et al. Development of novel hydrocyclone designs for improved fines classification using multiphase CFD model[J]. Separation and purification technology, 2017, 175:481-497.
[16] Liang-Yin Chu,Wen-Mei Chen,Xiao-Zhong Lee. Effect of structural modification on hydrocyclone performance[J]. Separation and purification techno-logy, 2000, 21 (1-2):71-86.
[17] Jinyi Tian,Long Ni,Tao Song,et al. Numerical study of foulant-water separation using hydrocyclones enhanced by reflux device: Effect of underflow pipe diameter[J]. Separation and purification technology, 2019, 215:10-24.
[18] Reza Sabbagh,Michael G Lipsett,Charles R Koch, et al. An experimental investigation on hydrocyclone underflow pumping[J]. Powder technology, 2017, 305:99-108.

备注/Memo

备注/Memo:
收稿日期: 2024-08-25
作者简介:吴思拓(2002-),男,上海人,学士,技术研究方向为两相流分离。E-mail:2663401028@qq.com。
通信作者:兰雅梅(1976-),女,山西运城人,副教授,博士,从事结构物力学的特性研究。E-mail: ymlan@shou.edu.cn。
更新日期/Last Update: 2025-02-01