[1]邵泽龙,左延田.聚乙烯管道夹杂缺陷的微波检测实验研究[J].石油化工设备,2024,53(06):15-19.[doi:10.3969/j.issn.1000-7466.2024.06.003]
 SHAO Ze-long,ZUO Yan-tian.Experimental Research on Inclusion Defects in Polyethylene Pipe Using Microwave Detection Technology[J].Petro-Chemical Equipment,2024,53(06):15-19.[doi:10.3969/j.issn.1000-7466.2024.06.003]
点击复制

聚乙烯管道夹杂缺陷的微波检测实验研究()
分享到:

石油化工设备[ISSN:1000-7466/CN:62-1078/TQ]

卷:
53
期数:
2024年06期
页码:
15-19
栏目:
试验研究
出版日期:
2024-11-15

文章信息/Info

Title:
Experimental Research on Inclusion Defects in Polyethylene Pipe Using Microwave Detection Technology
文章编号:
1000-7466(2024)06-0015-05
作者:
邵泽龙12左延田12
1.上海市特种设备监督检验技术研究院,上海 200062;2.上海压力管道智能检测工程技术研究中心,上海 200062
Author(s):
SHAO Ze-long12ZUO Yan-tian12
1.Shanghai Institute of Special Equipment Inspection and Technical Research,Shanghai 200062,China; 2.Shanghai Engineering Research Center of Pressure Pipeline Intelligent Inspection,Shanghai 200062,China
关键词:
管道聚乙烯微波检测幅相反演缺陷
Keywords:
pipepolyethylenemicrowave detectionamplitude phase inversiondefect
分类号:
TQ055.807
DOI:
10.3969/j.issn.1000-7466.2024.06.003
文献标志码:
A
摘要:
受制造工艺、材料性能以及工作环境等因素的影响,聚乙烯管道容易产生夹杂等缺陷。常用的射线检测、超声检测等无损检测方法在聚乙烯管道检测中均存在明显缺点。对新兴的微波检测原理进行了理论推导和分析,介绍了微波在聚乙烯管道缺陷检测中的传输模式和管道缺陷的几何信息幅相反演原理。采用矢量网络分析仪作为微波信号收发机,对聚乙烯管道夹杂缺陷试件进行实验。实验结果证明了幅相信息反演的微波反射检测法在聚乙烯管道夹杂缺陷检测中的有 效性。
Abstract:
Polyethylene(PE) pipe defects,such as inclusion defects, are easily affected by factors such as manufacturing process,material characteristics and working environment. Traditional non-destructive testing methods such as X-ray and ultrasonic methods have obvious shortcomings in the defect detection process for PE pipes. The new detection method,microwave detection method,has been theoretically deduced and thoroughly analyzed. At the same time,the microwave transmission mode in PE pipes and the amplitude phase inversion principle for PE pipe inclusion defect geometric information were introduced. Experiments were conducted for PE pipe samples with inclusion defects using vector network analyzer as the transceiver of microwave signals. The experimental results showed that the microwave detection method based on amplitude phase information inversion is effective in the detection process for PE pipes with inclusion defects.

参考文献/References:

[1] AMINEH R K,RAVAN M,SHARMA R. Nondestructive testing of nonmetallic pipes using wideband microwave measurements[J].IEEE transactions on microwave theory and techniques,2020,68(5):1763-1772.
[2] RAHMAN M S U,HARYONO A,ABOUKHOUSA M A. Microwave non-destructive evaluation of glass reinforced epoxy and high density polyethylene pipes[J].Journal of nondestructive evaluation,2020,39(1):26.
[3] 施建峰,冯颖,陶杨吉,等.聚乙烯管道无损检测技术标准进展[J].压力容器,2021,38(10):66-75.
[4] 左延田,俞厚德.在用埋地钢质管道管体无损检测技术[J].化工装备技术,2010,31(6):53-56.
[5] MURPHY K,LOWE D. Evaluation of a novel microwave-based NDT inspection method for polyethylene joints[C]//ASME 2011 Pressure Vessels and Piping Conference.Maryland:American Society of Mechanical Engineers,2011:321-327.
[6] GHASR M T,YING K,ZOUGHI R. 3D millimeter wave imaging of vertical cracks and its application for the inspection of HDPE pipes[C]//Proceedings of the 40th Annual Review of Progress in Quantitative Nondestructive Evaluation.[S.L.]:AIP Publishing LLC.,2014:1531-1536,1581.
[7] 回沛林,李勇,王若男,等.埋地聚乙烯管线外部土壤空穴的微波无损定量检测[J].无损检测,2022,44(5):43-46,52.
[8] 王若男,李勇,回沛林,等. PE结构埋深缺陷的微波无损可视化检测[J].无损检测,2023,45(9):22-27,32.
[9] 安康,李长侑,丁君.基于微波时间反演算法的复合材料内部损伤检测[J].无损检测,2023,45(9):43-48,80.
[10] 雒明世,张蒙蒙,方阳.PE管道的近场微波成像及缺陷定量表征[J].通信学报,2023,44(9):139-148.
[11] Luo M,Zhang M.A wall-passing radar imaging algorithm based on weighted L 1 norm[C]//2021 6th International Conference on Intelligent Computing and Signal Processing(ICSP).Xi’an:Institute of Electrical and Electronics Engineers,2021.
[12] 张蒙蒙.基于微波成像的非金属管道无损检测方法研究[D].西安:西安石油大学,2023.
[13] LI Z,HAIGH A,SOUTIS C,et al. A review of microwave testing of glass fibre-reinforced polymer composites[J]. Nondestructive testing and evaluation,2019,34(4):429-458.
[14] 牛晴晴,张祥坤.P波段步进线性调频雷达半实物仿真研究[J].微波学报,2020,36(6):19-23.
[15] 邵泽龙.基于FMCW_GBSAR的微形变监测技术研究[D].北京:中国科学院大学,2019.
[16] MEIER D,SCHWARZE T,LINK T,et al. Millimeter-wave tomographic imaging of composite materials based on phase evaluation[J].IEEE transactions on microwave theory and techniques,2019,67(10):4055-4068.

相似文献/References:

[1]卢 意,秦步祥,于 雯.一种新型超高分子量聚乙烯增强管的制备[J].石油化工设备,2017,(06):14.[doi:10.3969/j.issn.1000-7466.2017.06.003]
 LU Yi,QIN Bu-xiang,YU Wen.Preparation of a New Ultra-high Molecular Weight Polyethylene Reinforced Pipe[J].Petro-Chemical Equipment,2017,(06):14.[doi:10.3969/j.issn.1000-7466.2017.06.003]
[2]罗 懿.基于ANSYS Workbench有限元法的 外腐蚀管道失效压力研究[J].石油化工设备,2019,48(02):7.[doi:10.3969/j.issn.1000-7466.2019.02.002]
 LUO Yi.Study on the External Corrosion Failure Pressure of Pipeline Based on ANSYS Workbench Finite Element Method[J].Petro-Chemical Equipment,2019,48(06):7.[doi:10.3969/j.issn.1000-7466.2019.02.002]
[3]丁继超,何立东,万方腾,等.阻尼减振技术在加氢分馏塔进料管道上的应用[J].石油化工设备,2019,48(04):60.[doi:10.3969/j.issn.1000-7466.2019.04.011]
 DING Ji-chao,HE Li-dong,WAN Fang-teng,et al.Application of Damping Technique in Hydrogenation Fractionation Tower Feed Pipeline[J].Petro-Chemical Equipment,2019,48(06):60.[doi:10.3969/j.issn.1000-7466.2019.04.011]
[4]范嘉堃,陈海平,明红芳,等.计量撬沉降管道应力分析及抬升措施[J].石油化工设备,2020,(02):38.[doi:10.3969/j.issn.1000-7466.2020.02.008]
 FAN Jia-kun,CHEN Hai-ping,MING Hong-fang,et al.Stress Analysis and Lifting Measures for Settlement Pipeline of Metering Skid[J].Petro-Chemical Equipment,2020,(06):38.[doi:10.3969/j.issn.1000-7466.2020.02.008]
[5]王品贤,夏俏健,牛志勇,等.国内外管道设计标准中管道壁厚计算方法差异[J].石油化工设备,2020,(02):53.[doi:10.3969/j.issn.1000-7466.2020.02.010]
 WANG Pin-xian,XIA Qiao-jian,NIU Zhi-yong,et al.The Difference in Calculation Method of Pipeline Wall Thickness in Domestic and Foreign Pipeline Design Standards[J].Petro-Chemical Equipment,2020,(06):53.[doi:10.3969/j.issn.1000-7466.2020.02.010]
[6]赵 番,汤晓英,王继锋,等.管道漏磁内检测探头耐磨性能旋转试验台设计[J].石油化工设备,2020,(06):11.[doi:10.3969/j.issn.1000-7466.2020.06.003]
 ZHAO Fan,TANG Xiao-ying,WANG Ji-feng,et al.Design of a Probe Friction Resistance Test Bench for Pipeline Magnetic Flux Leakage Inspection Gauge[J].Petro-Chemical Equipment,2020,(06):11.[doi:10.3969/j.issn.1000-7466.2020.06.003]
[7]李 伟,鲍俊涛,阎雪冬,等.工况对管道凹陷形成及管道安全性的影响[J].石油化工设备,2021,(01):35.[doi:10.3969/j.issn.1000—7466.2021.01.007]
 LI Wei,BAO Jun-tao,YAN Xue-dong,et al.Influence of Working Conditions on Pipeline Depression Formation and Pipeline Safety Property[J].Petro-Chemical Equipment,2021,(06):35.[doi:10.3969/j.issn.1000—7466.2021.01.007]
[8]鲁世军,卢雪梅,李玉阁,等.合成甲醇装置变换炉出口管道开裂失效原因分析[J].石油化工设备,2021,(01):72.[doi:10.3969/j.issn.1000—7466.2021.01.014]
 LU Shi-jun,LU Xue-mei,LI Yu-ge,et al.Cause Analysis of Crack and Failure of Conversion Furnace Outlet Pipeline of Methanol Synthesis Unit[J].Petro-Chemical Equipment,2021,(06):72.[doi:10.3969/j.issn.1000—7466.2021.01.014]
[9]李祚成,李思源,许 可.局部减薄管道极限弯矩计算新公式[J].石油化工设备,2021,(04):36.[doi:10.3969/j.issn.1000—7466.2021.04.007]
 LI Zuo-cheng,LI Si-yuan,XU Ke.New Calculation Formulas for Limit Bending Moment of Locally Thinned Pipes[J].Petro-Chemical Equipment,2021,(06):36.[doi:10.3969/j.issn.1000—7466.2021.04.007]
[10]刘玉明,王继锋,汤晓英,等.管道漏磁检测缺陷尺寸与信号特征参数关系分析[J].石油化工设备,2021,(06):9.[doi:10.3969/j.issn.1000—7466.2021.06.002]
 LIU Yu-ming,WANG Ji-feng,TANG Xiao-ying,et al.Relationship Analysis between Defect Size and Signal Characteristic Parameters in Pipeline Magnetic Flux Leakage Detection[J].Petro-Chemical Equipment,2021,(06):9.[doi:10.3969/j.issn.1000—7466.2021.06.002]
[11]黄焕东,沈正祥,王 杜,等.聚乙烯管道电熔接头质量控制及评估方法探讨[J].石油化工设备,2022,(01):53.[doi:10.3969/j.issn.1000—7466.2022.01.010]

备注/Memo

备注/Memo:
收稿日期: 2024-06-15
基金项目:上海市特种设备监督检验技术研究院科技项目(2024-04Y):微波技术在PE管道检测中的应用研究
作者简介:邵泽龙(1989-),男,山东临沂人,工程师,博士,从事微波技术应用及信号处理研究。
更新日期/Last Update: 2024-11-15