[1]潘跃跃,杨其洲,徐阳,等.双层改进型推进式搅拌桨桨间距对搅拌槽内流场的影响[J].石油化工设备,2024,53(06):8-14.[doi:10.3969/j.issn.1000-7466.2024.06.002]
 PAN Yue-yue,YANG Qi-zhou,XU Yang,et al.Effect of the Impeller Pitch of Double-layer Improved Propeller on Flow Field in the Stirred Tanks[J].Petro-Chemical Equipment,2024,53(06):8-14.[doi:10.3969/j.issn.1000-7466.2024.06.002]
点击复制

双层改进型推进式搅拌桨桨间距对搅拌槽内流场的影响()
分享到:

石油化工设备[ISSN:1000-7466/CN:62-1078/TQ]

卷:
53
期数:
2024年06期
页码:
8-14
栏目:
试验研究
出版日期:
2024-11-15

文章信息/Info

Title:
Effect of the Impeller Pitch of Double-layer Improved Propeller on Flow Field in the Stirred Tanks
文章编号:
1000-7466(2024)06-0008-07
作者:
潘跃跃杨其洲徐阳周勇军
南京工业大学 机械与动力工程学院,江苏 南京 211816
Author(s):
PAN Yue-yueYANG Qi-zhouXU YangZHOU Yong-ju
College of Mechanical and Power Engineering,Nanjing Tech University,Nanjing 211816,China
关键词:
推进式搅拌桨搅拌槽桨间距粒子图像测速大涡模拟流场
Keywords:
propeller impellerstirred tankimpeller pitchparticle image velocimetrylarge eddy simulationflow field
分类号:
TQ027
DOI:
10.3969/j.issn.1000-7466.2024.06.002
文献标志码:
A
摘要:
采用粒子图像测速技术对不同桨间距C2下双层改进型推进式搅拌桨槽内流场特性进行实验研究,并分别采用大涡模拟模型、标准k-ε模型以及RNGk-ε模型对搅拌槽内流场进行模拟预测。研究结果表明,桨间距C2对搅拌槽内流型及速度分布有较大影响。当C2=0.23H(H为液位高度)时,受上桨排出和卷吸作用的影响,下桨区域的旋涡无法成型,搅拌槽内物料混合效果不佳;当C2=0.26H时,上桨叶区的高速区域较C2=0.23H时增大了20%左右,下桨叶区高速区域增大了近25%,下桨叶区开始形成区域自循环;当C2增大到0.29H 时,两桨间逐渐出现低速旋涡和流动死区,同时混合效率降低。对比r/T(r/T为周向距离比)=0.4处的无因次化速度分布,发现采用大涡模拟模型得到的模拟结果与搅拌槽内流场的实验结果更接近。研究结果可为双层改进型推进式搅拌桨的实际应用提供参考。
Abstract:
Particle image velocimetry was used to experimentally study the characteristics of the flow field in the stirred tank at different impeller pitches C2,and the large eddy simulation model,standard k-ε model and RNG k-ε model were used to simulate the flow field in the tank, respectively. The research results show that the impeller pitch has a great influence on the flow streamlines and velocity distribution in the tank. When the impeller pitch C2=0.23H(H represents the liquid level height),affected by the upper impeller discharge and entrainment effects,the vortex of the lower impeller zone cannot be formed,and the mixing effect of materials in the tank would be poor; When the impeller pitch C2=0.26H,compared with C2=0.23H,the high-speed zone in the upper impeller zone increases by about 20%,the high-speed zone in the lower impeller zone increases by nearly 25%,and the lower impeller zone begins to form regional self-circulation. When the impeller pitch increases to C2=0.29H,low-speed vortices and flow dead zone gradually appear between two propellers,meanwhile,the mixing efficiency decreases. By comparing the position at r/T( r/T represents the circumferential distance ratio)=0.4,it was found that the simulation results using the large vortex simulation model are closer to the experimental results of the flow field in the stirred tank. The research results provide a reference for the practical application of this stirring impeller.

参考文献/References:

[1] 商新月.基于PIV和CFD的鱼尾型搅拌桨设计与优化[D].重庆:西南大学,2023. SHANG X Y. Design and optimization of fishtail impeller based on PIV and CFD[D].Chongqing:Southwest University,2023.
[2] 朱俊,周政霖,刘作华,等.刚柔组合搅拌桨强化流体混合的流固耦合行为[J].化工学报,2015,66(10):3849-3856. ZHU J,ZHOU Z L,LIU Z H,et al .Fluid-structure interaction in liquid mixing intensified by flexible-rigid impeller[J]. CIESC journal,2015,66(10):3849-3856.
[3] Jin J,Fan Y. PIV experimental study on flow structure and dynamics of square stirred tank using modal decomposition[J]. Korean journal of chemical engineering,2020,37(5):755-765.
[4] 郭海锋,包健,王家成,等.新型框式组合桨层间距对釜内流场特性的影响[J].化学工程,2023,51(1):63-67. GUO H F,BAO J,WANG J C,et al.Effect of layer spacing about new frame combined impeller on flow field characteristics in stirred tank[J]. Chemical engineering,2023,51(1):63-67.
[5] 林伟振,周勇军,王璐璐,等.改进型INTER-MIG桨尾涡结构的PIV试验与模拟[J].排灌机械工程学报,2021,39(2):158-164,171. LIN W Z,ZHOU Y J,WANG L L,et al. PIV experiment and numerical simulation of trailing vortex structure of improved INTER-MIG impeller[J]. Journal of drainage and irrigation machinery engineering,2021,39(2):158-164,171.
[6] Wang Z,Li D,Gao Q,et al. Study of the flow field of a new fishtail-type stirring impeller in a stirred tank[J]. Chemical engineering and processing-process intensification,2023,194(C): 109577.
[7] Stelmach J,Kuncewicz C,Jirout T,et al. Mixing tank hydrodynamics and mixing efficiency for propeller impellers[J]. Chemical engineering research and design,2023,199:460-472.
[8] 黎义斌,宋亚娟,歹晓晖,等.不同推进式桨叶对搅拌反应器内气液两相混合特性的影响[J].化工学报,2020,71(S1):227-235. LI Y B,SONG Y J,DAI X H,et al. Effects of different propeller blades on gas-liquid two-phase mixing characteristics in stirred reactor[J].CIESC journal,2020,71(S1):227-235.
[9] 杨潮,王博,张自强,等.面向最优固含率的推进式搅拌器固相悬浮性能研究[J].高校化学工程学报, 2021,35(3):415-422. YANG C,WANG B,ZHANG Z Q,et al. Research on suspension performance of propellers for optimum solid concentration applications[J].Journal of chemical engineering of Chinese universities,2021,35(3):415-422.
[10] Pour M H,Nansa V M,Saberi M,et al. CFD simulation of solid-liquid stirred tank with Rushton turbine and propeller impeller[J]. International journal of chemical and molecular engineering,2013,7(6):410-413.
[11] Chen Meng,Huang Jianke,Ye Chunyu,et al. Comparing the performances of circular ponds with different impellers by CFD simulation and microalgae culture experiments[J]. Bioprocess and biosystems engineering,2015,38(7):1347-1363.
[12] 肖生泽,杨紫娟,何婷婷,等.板式热交换器高粘性流体传热与流动模拟研究[J].机械研究与应用, 2019,32(4):12-16,20. XIAO S Z,YANG Z J,HE T T,et al. Study on heat transfer and flow simulation of high viscosity fluid in plate heat exchanger[J]. Mechanical research & application,2019,32(4):12-16,20.
[13] 张子璇.厌氧发酵搅拌设备的放大研究[D].杭州:浙江大学,2023. ZHANG Z X. Scale-up study of anaerobic fermentation stirring equipment[D].Hangzhou:Zhejiang University,2023.
[14] Seyed Hosseini,Dineshkumar Patel,Farhad Ein-Mozaffari. Study of solid-liquid mixing in agitated tanks through computational fluid dynamics modeling[J]. Industrial & engineering chemistry research,2010,49(9):4426-4435.
[15] 游攀.基于分形理论的H型搅拌桨釜内流动特性研究[D].南京:东南大学,2022. YOU P. Study on the flow characteristics in H-type stirred tank based on fractal theory [D].Nanjing:Southeast University,2022.
[16] Launder B E,Spalding D B. The numerical computation of turbulent flows——Numerical prediction of flow,heat transfer,turbulence and combustion[M]. Oxford:Pergamon Press,1983:96-116.

相似文献/References:

[1]王光武,周勇军,薛亚运,等.双层改进型INTER-MIG桨偏心搅拌槽内流动特性PIV研究[J].石油化工设备,2017,(05):12.[doi:10.3969/j.issn.1000-7466.2017.05.003]
 WANG Guang-wu,ZHOU Yong-jun,XUE Ya-yun,et al.Study on Flow Characteristics in an Eccentrically Agitated Vessel with Bilayer Improved INTER-MIG Impellers with PIV[J].Petro-Chemical Equipment,2017,(06):12.[doi:10.3969/j.issn.1000-7466.2017.05.003]
[2]曹 宇,董金善,曾子杨.不同挡板数搅拌槽内流场模拟[J].石油化工设备,2018,47(02):7.[doi:doi:10.3969/j.issn.1000-7466.2018.02.002]
 CAO Yu,DONG Jin-shan,ZENG Zi-yang.Flow Field Simulation in the Stirred Tanks with Baffles of Different Numbers[J].Petro-Chemical Equipment,2018,47(06):7.[doi:doi:10.3969/j.issn.1000-7466.2018.02.002]
[3]高晓斌,包 健,郭海锋,等.双层三窄叶旋桨搅拌槽内流场特性研究[J].石油化工设备,2024,53(03):52.[doi:10.3969/j.issn.1000-7466.2024.03.009]
 GAO Xiao-bin,BAO Jian,GUO Hai-feng,et al.Study of Flow Field Characteristics in a Stirred Tank Equipped with a Double Triple Narrow Blade Rotating Impeller[J].Petro-Chemical Equipment,2024,53(06):52.[doi:10.3969/j.issn.1000-7466.2024.03.009]
[4]徐阳,杨其洲,潘跃跃,等.穿流-四斜叶组合桨桨间距对搅拌槽内流场特性的影响[J].石油化工设备,2024,53(04):9.[doi:10.3969/j.issn.1000-7466.2024.04.002]
 XU Yang,YANG Qi-zhou,PAN Yue-yue,et al.Effect of Impeller Pitch on the Flow Characteristics of Punched and Four-bladed Combination Impellers in a Stirred Tank[J].Petro-Chemical Equipment,2024,53(06):9.[doi:10.3969/j.issn.1000-7466.2024.04.002]

备注/Memo

备注/Memo:
收稿日期: 2024-05-31
基金项目:国家自然科学基金资助项目(52175171)
作者简介:潘跃跃(1999-),男,安徽阜阳人,在读硕士研究生,研究方向为搅拌装备开发。电话:18712527726,E-mail:202261207111@njtech.edu.cn。
通信作者:周勇军(1969-),男,江苏南京人,硕士,教授,研究方向为流体机械技术及装备研发、过程装备故障诊断评价与节能技术等。E-mail:zhouyj@njtech.edu.cn。
更新日期/Last Update: 2024-11-15