[1]王乙为,王思琦,叶晶,等.板壳式热交换器内制冷剂R410A蒸发传热性能研究[J].石油化工设备,2024,53(06):1-7.[doi:10.3969/j.issn.1000-7466.2024.06.001]
 WANG Yi-wei,WANG Si-qi,YE Jing,et al.Research on Evaporation Heat Transfer Performance of Refrigerant R410A in Plate and Shell Heat Exchanger[J].Petro-Chemical Equipment,2024,53(06):1-7.[doi:10.3969/j.issn.1000-7466.2024.06.001]
点击复制

板壳式热交换器内制冷剂R410A蒸发传热性能研究()
分享到:

石油化工设备[ISSN:1000-7466/CN:62-1078/TQ]

卷:
53
期数:
2024年06期
页码:
1-7
栏目:
试验研究
出版日期:
2024-11-15

文章信息/Info

Title:
Research on Evaporation Heat Transfer Performance of Refrigerant R410A in Plate and Shell Heat Exchanger
文章编号:
1000-7466(2024)06-0001-07
作者:
王乙为1王思琦2叶晶2栾辉宝2阮应君1
1.同济大学 机械与能源学院,上海 201804; 2.中国船舶集团有限公司 第七一一研究所,上海 201108
Author(s):
WANG Yi-wei1WANG Si-qi2YE Jing2LUAN Hui-bao2RUAN Ying-jun1
1.College of Mechanical and Energy Engineering,Tongji University,Shanghai 201804,China;2.Shanghai Marine Diesel Engine Research Institute,Shanghai 201108,China
关键词:
板壳式热交换器制冷剂蒸发传热系数摩擦压降关联式
Keywords:
plate and shell heat exchangerrefrigerantevaporationheat transfer coefficientfrictional pressure dropcorrelation
分类号:
TQ051.5
DOI:
10.3969/j.issn.1000-7466.2024.06.001
文献标志码:
A
摘要:
通过实验研究了板壳式热交换器内制冷剂R410A的蒸发传热特性,分析了饱和温度、质量流率和平均干度对蒸发传热系数及两相摩擦压降的影响。将实验数据与现有的蒸发传热预测模型进行比较,拟合得到了板壳式热交换器内R410A蒸发传热努塞尔数和摩擦因数的关联式。研究结果表明,R410A的蒸发传热系数随平均干度的增大先增大后减小,随质量流率的增大而增大,随饱和温度的升高而减小。两相摩擦压降随平均干度、质量流率的增大而增大,随饱和温度的升高而减小。R410A努塞尔数、摩擦因数的关联式计算值与实验值的平均误差绝对值分别为3.78%、4.08%。
Abstract:
The evaporation heat transfer properties of refrigerant R410A in a plate and shell heat exchanger were investigated experimentally,and the effects of saturation temperature,mass flow rate,and average vapor qualities on the evaporation heat transfer coefficient and two-phase frictional pressure drop were analyzed. The experimental data were compared with existing correlations,and the correlations of Nussel number and friction factor of R410A in plate and shell heat exchanger is obtained by fitting. The results show that the evaporation heat transfer coefficient of R410A increases and then decreases with increasing average vapor qualities,increases with increasing mass flow rate,and decreases with increasing saturation temperature. The two-phase frictional pressure drop increases with average vapor qualities and mass flow rate and decreases with saturation temperature. The average error absolute value between the experimental values and the calculated values of the evaporation heat transfer coefficient is 3.78%,while the friction factor is 4.08%.

参考文献/References:

[1] Wang K,Chen J,Wu P,et al. The characteristics of flow patterns in the shell-and-plate heat exchanger[J]. International journal of refrigeration,2023,152:315-330.
[2] Lee D,Kim D,Yun S,et al. Two-phase flow patterns and pressure drop of a low GWP refrigerant R-1234ze(E) in a plate heat exchanger under adiabatic conditions[J]. International journal of heat and mass transfer,2019(145):118816.
[3] Costa M O B,Beckedorff L,De Paiva K V,et al. Multiphase flows in plate and shell heat exchangers[J]. Journal of fluids engineering,2022,144(9):091401.
[4] Song K S,Yun S,Lee D,et al. Evaporation heat transfer characteristics of R-245fa in a shell and plate heat exchanger for very-high-temperature heat pumps[J]. International journal of heat and mass transfer,2020(151):119408.
[5] Ramadan Z,Park K Y,Park C W. Numerical and experimental investigation of heat and mass transfer performance of pool boiling type shell and plate evaporator[J]. International journal of heat and mass transfer,2022(199):123428.
[6] 袁雨文,赵巍,刘家瑞,等.板壳式换热器板片流动与传热性能的数值模拟[J]. 能源工程,2020(3):39-45. YUAN Y W,ZHAO W,LIU J R,et al. Numerical simulation on the flow and heat transfer characteristics of the plate of shell and plate heat exchanger[J]. Energy engineering,2020(3):39-45.
[7] 刘家瑞,赵巍,黄晓东,等.板壳式换热器传热准则关系式的分析与实验研究[J]. 动力工程学报,2015,35(6):469-475. LIU J R,ZHAO W,HUANG X D,et al. Analysis and experimental study on heat transfer formula for plate and shell heat exchangers[J]. Journal of Chinese society of power engineering,2015,35(6):469-475.
[8] 王珂,孙光毅,安博,等.人字形角对导孔型板壳式换热器壳程流体流动与传热特性的影响[J]. 压力容器,2023,40(3):7-15. WANG K,SUN G Y,AN B,et al. Effect of herringbone angle on flow and heat transfer characteristics of the fluid on shell side of guide groove type shell-and-plate heat exchanger[J]. Pressure vessel technology,2023,40(3):7-15.
[9] 刘家瑞,赵巍,黄晓东,等.一种板壳式换热器传热准则关系式的实验分析[J]. 动力工程学报,2015,35(11):893-900. LIU J R,ZHAO W,HUANG X D,et al. Experimental analysis on heat transfer correlation of plate-shell heat exchangers[J]. Journal of Chinese society of power engineering,2015,35(11):893-900.
[10] 徐辉,苏文献.板壳式换热器流动与传热的数值模拟[J]. 能源工程,2018(4):71-74,79. XU H,SU W X. Numerical simulation of flow and heat transfer in a plate heat exchanger[J]. Energy engineering,2018(4):71-74,79.
[11] 栾辉宝,陶文铨,朱国庆,等.全焊接板式换热器发展综述[J].中国科学:技术科学,2013,43(9):1020-1033. LUAN H B,TAO W Q,ZHU G Q,et al. Overview of the development of fully welded plate heat exchangers[J]. Science China,2013,43(9):1020-1033.
[12] JOHN G COLLIER,JOHN R THOME. Convective boiling and condensation[M]. New York:Oxford University Press Inc.,1994.
[13] Tao X,Shen Y,Wang B,et al. Condensation of NH3/H2O with mass concentrations of 80%-96%:Experimental study in a plate heat exchanger[J]. International journal of refrigeration,2023,151:253-266.
[14] 尾花英朗.热交换器设计手册[M].北京:石油工业出版社,1982:194. Onihana Inron. Heat exchanger design manual[M]. Beijing:Petroleum Industry Press,1982:194.
[15] Thome J R. Encyclopedia of two-phase heat transfer and flow I:Fundamentals and methods—Volume 4:Special topics in pool and flow boiling[M]. Singapore:Elsevier,2015.
[16] Jo C,Lee D,Chung H J,et al. Comparative evaluation of the evaporation heat transfer characteristics of a low-GWP refrigerant R-1234ze(E) between shell-and-plate and plate heat exchangers[J]. International journal of heat and mass transfer,2020(153):119598.
[17] Zhang J,Desideri A,K■rn M R,et al. Flow boiling heat transfer and pressure drop characteristics of R134a,R1234yf and R1234ze in a plate heat exchanger for organic rankine cycle units[J]. International journal of heat and mass transfer,2017(108):1787-1801.
[18] Kim I-K,Park J-H,Kwon Y-H,et al. Experimental study on R-410a evaporation heat transfer characteristics in oblong shell and plate heat exchanger[J]. Heat transfer engineering, 2007,28(7):633-639.
[19] Yan Y-Y,Lin T-F. Evaporation heat transfer and pressure drop of refrigerant R-134a in a plate heat exchanger[J]. Journal of heat transfer,1999,121(1):118-127.
[20] Arima H,Kim J H,Okamoto A,et al. Local boiling heat transfer characteristics of ammonia in a vertical plate evaporator[J]. International journal of refrigeration, 2010,33(2):359-370.

相似文献/References:

[1]姚立影,侯霄艳,郝开开,等.板壳式热交换器入口管箱流体分布数值模拟及结构优化[J].石油化工设备,2019,48(02):33.[doi:10.3969/j.issn.1000-7466.2019.02.007]
 YAO Li-ying,HOU Xiao-yan,HAO Kai-kai,et al.Numerical Simulation and Structure Optimization on Fluid Distribution in Inlet Tube Box of Plate-and-shell Heat Exchanger[J].Petro-Chemical Equipment,2019,48(06):33.[doi:10.3969/j.issn.1000-7466.2019.02.007]

备注/Memo

备注/Memo:
收稿日期: 2024-06-24
基金项目:国家重点研发计划项目(2023YFC3807102)
作者简介:王乙为(2000-),女,四川内江人,在读硕士研究生,研究方向为热交换器的相变传热。E-mail:wangyiwei3270@163.com。
通信作者:栾辉宝(1983-),男,山西运城人,研究员,博士,研究方向为高效热交换器的设计与开发。E-mail:luanhuibao@163.com。
更新日期/Last Update: 2024-11-15